ARTICLE

NANOFORMULATED MYRISTIC ACID FOR ANTIMICROBIAL APPLICATIONS

01 Pages : 1-9

http://dx.doi.org/10.31703/gpsr.2017(II-I).01      10.31703/gpsr.2017(II-I).01      Published : Dec 2017

Nanoformulated Myristic Acid for Antimicrobial Applications

    Free fatty acids possess antimicrobial properties in the natural defense system of many eukaryotes. In this study, we synthesized nanoformulations of myristic acid for antimicrobial activity. The myristic acid nanoformulations (MN) were unstable due to crystallization. This problem was overcome by the addition of the liquid fatty acids and by using two surfactants of hydrophilic and lipophilic nature. MN exhibited a small size (100 nm), and their physical form was affected by the amount of the liquid fatty acid. MN with myristic acid and liquid fatty acid in 1:1 formed solid NLC and 2:3 formed liquid nanoemulsions. In antimicrobial studies, MN was effective against the Gram- positive bacteria, i.e. Staphylococcus aureus and Bacillus subtillis, and the Gram-negative bacteria, i.e. Pseudomonas eruginosa and Salmonella typhi. MN8 (Myristic acid and oleic acid in 2:3) showed the highest antimicrobial activity and should be explored as potential antimicrobial agents against more strains of microorganisms.

    Antimicrobial Resistance, MRSA, Fatty Acids, Algae, Nanoparticles, Antibiotics
    (1) Mubashar Rehmana
    Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (2) Adeel Arshad
    Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan.
    (3) Muhammad Asadullah Madni
    Professor, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan.
  • Clardy, J. M. A., Fischbach, & Currie, C. R. (2009). The natural history of antibiotics. Current Biology, 2009. 19(11), p. R437-R441.
  • Li, X. Z. C. A., Elkins, & Zgurskaya, H. I. (2016). Efflux-Mediated Antimicrobial Resistance in Bacteria..
  • Tang, S. S. A., Apisarnthanarak, & Hsu, L. Y. (2014). Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria. Advanced drug delivery reviews,78, p. 3-13.
  • Wilson, D. N. (2014). Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology, 12(1), p. 35-48.
  • Control, C. f. D. (2016). Antibiotic / Antimicrobial resistance. Center for Disease Control: United States.
  • Krause, A. et al., (2000). LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS letters, 480(2-3), p. 147-150.
  • Golbek, T. W. et al., (2017). Identifying the selectivity of antimicrobial peptides to cell membranes by sum frequency generation spectroscopy. Biointerphases, 12(2), p. 02D406.
  • Kim, J. S. et al., (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), p. 95-101.
  • Chwalibog, A., et al., (2010). Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine, 5(1), p. 1085-1094.
  • Falaise, C. et al., (2016). Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Marine Drugs, 14(9), p. 159.
  • Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied microbiology and biotechnology, 85(6), p. 1629-1642.
  • Yalkowsky, S. H. Y., He, & Jain, P. (2016). Handbook of aqueous solubility data. CRC press.
  • Freitas, C., & Müller, R. (1999). Correlation between long-term stability of solid lipid nanoparticles (SLN
  • Feldlaufer, E. N. et al., (2014). Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale, 6(2), p. 825-832.
  • Aditya, N. et al., (2014). development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT-Food Science and Technology, 59(1), p. 115-121.
  • Doktorovova, S. E. B., Souto, & Silva, A. M. (2014). Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers-a systematic review of in vitro data. European Journal of Pharmaceutics and Biopharmaceutics, 87(1), p. 1-18.
  • Coates, J. (2000). Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry,
  • Dogruoz, N., & Karagoz, A. (2008). Antibacterial activity of some plant extracts. IUFS Journal of Biology, 67(1), p. 17-21.
  • Galbraith, H. et al., (1971). Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. Journal of applied Bacteriology, 34(4), p. 803-813.
  • Zheng, C. J. et al., (2005). Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS letters, 579(23), p. 5157- 5162.
  • Zhao, S. et al., (2014). Mixture of nonionic/ionic surfactants for the formulation of nanostructured lipid carriers: effects on physical properties. Langmuir, 30(23), p. 6920- 6928
  • Posocco, P. et al., (2016). Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: comparison between experiments and molecular simulations. RSC Advances, 6(6), p. 4723-4729.
  • Puckett, S. D. et al., (2010). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), p. 706-713.
  • Zhang, P. et al., (2015). An isoform-specific myristylation switch targets type II PKA holoenzymes to membranes. Structure, 23(9), p. 1563-1572.
  • Feldlaufer, M. et al., (1993). Antimicrobial activity of fatty acids against Bacillus larvae, the causative agent of American foulbrood.

Cite this article

    CHICAGO : Rehmana, Mubashar, Adeel Arshad, and Muhammad Asadullah Madni. 2017. "Nanoformulated Myristic Acid for Antimicrobial Applications." Global Pharmaceutical Sciences Review, II (I): 1-9 doi: 10.31703/gpsr.2017(II-I).01
    HARVARD : REHMANA, M., ARSHAD, A. & MADNI, M. A. 2017. Nanoformulated Myristic Acid for Antimicrobial Applications. Global Pharmaceutical Sciences Review, II, 1-9.
    MHRA : Rehmana, Mubashar, Adeel Arshad, and Muhammad Asadullah Madni. 2017. "Nanoformulated Myristic Acid for Antimicrobial Applications." Global Pharmaceutical Sciences Review, II: 1-9
    MLA : Rehmana, Mubashar, Adeel Arshad, and Muhammad Asadullah Madni. "Nanoformulated Myristic Acid for Antimicrobial Applications." Global Pharmaceutical Sciences Review, II.I (2017): 1-9 Print.
    OXFORD : Rehmana, Mubashar, Arshad, Adeel, and Madni, Muhammad Asadullah (2017), "Nanoformulated Myristic Acid for Antimicrobial Applications", Global Pharmaceutical Sciences Review, II (I), 1-9
    TURABIAN : Rehmana, Mubashar, Adeel Arshad, and Muhammad Asadullah Madni. "Nanoformulated Myristic Acid for Antimicrobial Applications." Global Pharmaceutical Sciences Review II, no. I (2017): 1-9. https://doi.org/10.31703/gpsr.2017(II-I).01