01 Pages : 1-9
References
- Clardy, J. M. A., Fischbach, & Currie, C. R. (2009). The natural history of antibiotics. Current Biology, 2009. 19(11), p. R437-R441.
- Li, X. Z. C. A., Elkins, & Zgurskaya, H. I. (2016). Efflux-Mediated Antimicrobial Resistance in Bacteria..
- Tang, S. S. A., Apisarnthanarak, & Hsu, L. Y. (2014). Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria. Advanced drug delivery reviews,78, p. 3-13.
- Wilson, D. N. (2014). Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology, 12(1), p. 35-48.
- Control, C. f. D. (2016). Antibiotic / Antimicrobial resistance. Center for Disease Control: United States.
- Krause, A. et al., (2000). LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS letters, 480(2-3), p. 147-150.
- Golbek, T. W. et al., (2017). Identifying the selectivity of antimicrobial peptides to cell membranes by sum frequency generation spectroscopy. Biointerphases, 12(2), p. 02D406.
- Kim, J. S. et al., (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), p. 95-101.
- Chwalibog, A., et al., (2010). Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine, 5(1), p. 1085-1094.
- Falaise, C. et al., (2016). Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Marine Drugs, 14(9), p. 159.
- Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied microbiology and biotechnology, 85(6), p. 1629-1642.
- Yalkowsky, S. H. Y., He, & Jain, P. (2016). Handbook of aqueous solubility data. CRC press.
- Freitas, C., & Müller, R. (1999). Correlation between long-term stability of solid lipid nanoparticles (SLN
- Feldlaufer, E. N. et al., (2014). Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale, 6(2), p. 825-832.
- Aditya, N. et al., (2014). development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT-Food Science and Technology, 59(1), p. 115-121.
- Doktorovova, S. E. B., Souto, & Silva, A. M. (2014). Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers-a systematic review of in vitro data. European Journal of Pharmaceutics and Biopharmaceutics, 87(1), p. 1-18.
- Coates, J. (2000). Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry,
- Dogruoz, N., & Karagoz, A. (2008). Antibacterial activity of some plant extracts. IUFS Journal of Biology, 67(1), p. 17-21.
- Galbraith, H. et al., (1971). Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. Journal of applied Bacteriology, 34(4), p. 803-813.
- Zheng, C. J. et al., (2005). Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS letters, 579(23), p. 5157- 5162.
- Zhao, S. et al., (2014). Mixture of nonionic/ionic surfactants for the formulation of nanostructured lipid carriers: effects on physical properties. Langmuir, 30(23), p. 6920- 6928
- Posocco, P. et al., (2016). Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: comparison between experiments and molecular simulations. RSC Advances, 6(6), p. 4723-4729.
- Puckett, S. D. et al., (2010). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), p. 706-713.
- Zhang, P. et al., (2015). An isoform-specific myristylation switch targets type II PKA holoenzymes to membranes. Structure, 23(9), p. 1563-1572.
- Feldlaufer, M. et al., (1993). Antimicrobial activity of fatty acids against Bacillus larvae, the causative agent of American foulbrood.
- Clardy, J. M. A., Fischbach, & Currie, C. R. (2009). The natural history of antibiotics. Current Biology, 2009. 19(11), p. R437-R441.
- Li, X. Z. C. A., Elkins, & Zgurskaya, H. I. (2016). Efflux-Mediated Antimicrobial Resistance in Bacteria..
- Tang, S. S. A., Apisarnthanarak, & Hsu, L. Y. (2014). Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria. Advanced drug delivery reviews,78, p. 3-13.
- Wilson, D. N. (2014). Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology, 12(1), p. 35-48.
- Control, C. f. D. (2016). Antibiotic / Antimicrobial resistance. Center for Disease Control: United States.
- Krause, A. et al., (2000). LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS letters, 480(2-3), p. 147-150.
- Golbek, T. W. et al., (2017). Identifying the selectivity of antimicrobial peptides to cell membranes by sum frequency generation spectroscopy. Biointerphases, 12(2), p. 02D406.
- Kim, J. S. et al., (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), p. 95-101.
- Chwalibog, A., et al., (2010). Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine, 5(1), p. 1085-1094.
- Falaise, C. et al., (2016). Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Marine Drugs, 14(9), p. 159.
- Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied microbiology and biotechnology, 85(6), p. 1629-1642.
- Yalkowsky, S. H. Y., He, & Jain, P. (2016). Handbook of aqueous solubility data. CRC press.
- Freitas, C., & Müller, R. (1999). Correlation between long-term stability of solid lipid nanoparticles (SLN
- Feldlaufer, E. N. et al., (2014). Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale, 6(2), p. 825-832.
- Aditya, N. et al., (2014). development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT-Food Science and Technology, 59(1), p. 115-121.
- Doktorovova, S. E. B., Souto, & Silva, A. M. (2014). Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers-a systematic review of in vitro data. European Journal of Pharmaceutics and Biopharmaceutics, 87(1), p. 1-18.
- Coates, J. (2000). Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry,
- Dogruoz, N., & Karagoz, A. (2008). Antibacterial activity of some plant extracts. IUFS Journal of Biology, 67(1), p. 17-21.
- Galbraith, H. et al., (1971). Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. Journal of applied Bacteriology, 34(4), p. 803-813.
- Zheng, C. J. et al., (2005). Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS letters, 579(23), p. 5157- 5162.
- Zhao, S. et al., (2014). Mixture of nonionic/ionic surfactants for the formulation of nanostructured lipid carriers: effects on physical properties. Langmuir, 30(23), p. 6920- 6928
- Posocco, P. et al., (2016). Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: comparison between experiments and molecular simulations. RSC Advances, 6(6), p. 4723-4729.
- Puckett, S. D. et al., (2010). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), p. 706-713.
- Zhang, P. et al., (2015). An isoform-specific myristylation switch targets type II PKA holoenzymes to membranes. Structure, 23(9), p. 1563-1572.
- Feldlaufer, M. et al., (1993). Antimicrobial activity of fatty acids against Bacillus larvae, the causative agent of American foulbrood.
Cite this article
-
APA : Rehmana, M., Arshad, A., & Madni, M. A. (2017). Nanoformulated Myristic Acid for Antimicrobial Applications. Global Pharmaceutical Sciences Review, II(I), 1-9. https://doi.org/10.31703/gpsr.2017(II-I).01
-
CHICAGO : Rehmana, Mubashar, Adeel Arshad, and Muhammad Asadullah Madni. 2017. "Nanoformulated Myristic Acid for Antimicrobial Applications." Global Pharmaceutical Sciences Review, II (I): 1-9 doi: 10.31703/gpsr.2017(II-I).01
-
HARVARD : REHMANA, M., ARSHAD, A. & MADNI, M. A. 2017. Nanoformulated Myristic Acid for Antimicrobial Applications. Global Pharmaceutical Sciences Review, II, 1-9.
-
MHRA : Rehmana, Mubashar, Adeel Arshad, and Muhammad Asadullah Madni. 2017. "Nanoformulated Myristic Acid for Antimicrobial Applications." Global Pharmaceutical Sciences Review, II: 1-9
-
MLA : Rehmana, Mubashar, Adeel Arshad, and Muhammad Asadullah Madni. "Nanoformulated Myristic Acid for Antimicrobial Applications." Global Pharmaceutical Sciences Review, II.I (2017): 1-9 Print.
-
OXFORD : Rehmana, Mubashar, Arshad, Adeel, and Madni, Muhammad Asadullah (2017), "Nanoformulated Myristic Acid for Antimicrobial Applications", Global Pharmaceutical Sciences Review, II (I), 1-9
-
TURABIAN : Rehmana, Mubashar, Adeel Arshad, and Muhammad Asadullah Madni. "Nanoformulated Myristic Acid for Antimicrobial Applications." Global Pharmaceutical Sciences Review II, no. I (2017): 1-9. https://doi.org/10.31703/gpsr.2017(II-I).01