Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing
Antimicrobial therapy failure against wound infections and arise of extended resistance highly encourages the discovery of novel mechanisms to overcome underlying issues. Major causative agent for causing wound infection is "Staphylococcus aureus" and recent medications lack antibacterial action,mucoadhesion and patient compliance. Thiolation proves itself as a novel technique for treatment of wound infections via topical application. Thiomers possesses features such as higher porosity, bio degradation, and swelling index. Thiolated products are resistant to the harsh environmental changes. Similarly, with the advancements in drug delivery, various smart drug delivery techniques lead to enhancement in drug delivery. Nano particles allow the drugs to penetrate the cells by diffusion or energy dependent process and degrade themselves at specified siteof action by either attachment of recognition ligands or responsive stimuli. Overall, the Thiolated polymers and Nano medicines depicted potential to cure wounds with increased severity meeting the required features of an ideal wound dressing.
-
Wounds, Thiolated Polymers, Microbes, Healing Cascade, Nanoparticles, Drug Resistance
-
(1) Rabia Arshad Khan
Assistant Professor, Department of Pharmacy, The University of Lahore, Lahore, Punjab, Pakistan
(2) Salman Arshad Hamdard
College of Medicine and Dentistry, Karachi, Sindh, Pakistan
(3) Haleema Sadia
Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
(4) Abbas Ali Naseem
Department of Earth Sciences, Quaid i Azam University,45320, Islamabad, Pakistan
- Ali, A., Sarhan, H. A., & Magdy, T. (2014). Preparation and characterization of phenytoin sodium niosomes for enhanced closure of skin injuries. Int J Pharm Pharm Sci, 6, 542-546.
- Balogh, L., Hagnauer, G. L., Tomalia, D. A., & McManus, A. T. (2001). Antimicrobial dendrimer nanocomposites and a method of treating wounds: Google Patents.
- Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. chem. soc, 73(1), 373-380.
- Begam, T., Nagpal, A., & Singhal, R. (2003). A comparative study of swelling properties of hydrogels based on poly (acrylamide-co-methyl methacrylate) containing physical and chemical crosslinks. Journal of applied polymer science, 89(3), 779-786.
- Bernkop-Schnurch, A. (2005). Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev, 57(11), 1569-1582. doi: 10.1016/j.addr.2005.07.002
- Bernkop-Schnurch, A., Hornof, M., & Guggi, D. (2004). Thiolated chitosans. Eur J Pharm Biopharm, 57(1), 9-17.
- Bowler, P. G. (2002). Wound pathophysiology, infection and therapeutic options. Annals of medicine, 34(6), 419-427.
- Broughton 2nd, G., Janis, J. E., & Attinger, C. E. (2006). The basic science of wound healing. Plastic and reconstructive surgery, 117(7 Suppl), 12S-34S.
- Caldon, N. B. (2013). Effect of Solid Lipid Nanoparticle-Encapsulated Antimicrobial Peptide on Keratinocyte Migration and Wound Healing: Uniformed Services University Of The Health Sciences Bethesda United States.
- Carbinatto, F. M., De Castro, A. D., Evangelista, R. C., & Cury, B. S. (2014). Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian Journal of Pharmaceutical Sciences, 9(1), 27-34.
- Carvalho, F. C., Bruschi, M. L., Evangelista, R. C., & Gremião, M. P. D. (2010). Mucoadhesive drug delivery systems. Brazilian Journal of Pharmaceutical Sciences, 46(1), 1-17.
- Chidambara Murthy, K., Reddy, V. K., Veigas, J. M., & Murthy, U. D. (2004). Study on wound healing activity of Punica granatum peel. Journal of Medicinal Food, 7(2), 256-259.
- Daunton, C., Kothari, S., Smith, L., & Steele, D. (2012). A history of materials and practices for wound management. Wound Practice & Research: Journal of the Australian Wound Management Association, 20(4), 174.
- Değim, Z., Çelebi, N., Alemdaroğlu, C., Deveci, M., Öztürk, S., & Özoğul, C. (2011). Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing. International wound journal, 8(4), 343- 354.
- Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings-a review. BioMedicine, 5(4), 22-22.
- Dohmen, P. M., Weymann, A., Holinski, S., Linneweber, J., Geyer, T., & Konertz, W. (2011). Use of an antimicrobial skin sealant reduces surgical site infection in patients undergoing routine cardiac surgery. Surg Infect (Larchmt), 12(6), 475-481. doi: 10.1089/sur.2011.050
- Dongargaonkar, A. A., Bowlin, G. L., & Yang, H. (2013). Electrospun blends of gelatin and gelatin–dendrimer conjugates as a wound- dressing and drug-delivery platform. Biomacromolecules, 14(11), 4038-4045.
- Dumville, J. C., Gray, T. A., Walter, C. J., Sharp, C. A., & Page, T. (2014). Dressings for the prevention of surgical site infection. Cochrane Database Syst Rev(9), Cd003091. doi: 10.1002/14651858.CD003091.pub3
- Godin, B., Touitou, E., Rubinstein, E., Athamna, A., & Athamna, M. (2005). A new approach for treatment of deep skin infections by an ethosomal antibiotic preparation: an in vivo study. J Antimicrob Chemother, 55(6), 989- 994.
- Heggset, E. B. (2012). Enzymatic Degradation of Chitosans:-A study of the mode of action of selected chitinases and chitosanases.
- Joshi, M., & Patravale, V. (2008). Nanostructured lipid carrier (NLC) based gel of celecoxib. International Journal of Pharmaceutics, 346(1),124-132. doi: https://doi.org/10.1016/j.ijpharm.2007.05.060
- Kandavilli, S., Nair, V., & Panchagnula, R. (2002). Polymers in transdermal drug delivery systems. Pharmaceutical technology, 26(5), 62-81.
- King, D. R., Cohn, S. M., Proctor, K. G., & Group, M. C. T. (2004). Modified rapid deployment hemostat bandage terminates bleeding in coagulopathic patients with severe visceral injuries. Journal of Trauma and Acute Care Surgery, 57(4), 756-759.
- Küchler, S., Wolf, N. B., Heilmann, S., Weindl, G., Helfmann, J., Yahya, M. M., . . . Schäfer-Korting, M. (2010). 3D-wound healing model: influence of morphine and solid lipid nanoparticles. Journal of biotechnology, 148(1), 24-30.
- Kühne, H., Ullmann, U., & Kühne, F. (1985). New aspects on the pathophysiology of wound infection and wound healing—the problem of lowered oxygen pressure in the tissue. Infection, 13(2), 52-56.
- Kumar, S., Lakshmanan, V.-K., Raj, M., Biswas, R., Hiroshi, T., Nair, S. V., & Jayakumar, R. (2013). Evaluation of wound healing potential of β- chitin hydrogel/nano zinc oxide composite bandage. Pharmaceutical research, 30(2), 523- 537.
- Kwon, M. J., An, S., Choi, S., Nam, K., Jung, H. S., Yoon, C. S., . . . Jung, S. J. (2012). Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. The journal of gene medicine, 14(4), 272-278.
- Ladaviere, C., & Gref, R. (2015). Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Nanomedicine, 10(19), 3033- 3055.
- Li, Z., Overend, C., Maitz, P., & Kennedy, P. (2012). Quality evaluation of meshed split-thickness skin grafts stored at 4° C in isotonic solutions and nutrient media by cell cultures. Burns, 38(6), 899-907.
- Mishra, N., Pant, P., Porwal, A., Jaiswal, J., Aquib Samad, M., & Tiwari, S. (2016). Targeted Drug Delivery: A Review (Vol. 6).
- Naz, K., Shahnaz, G., Ahmed, N., Qureshi, N. A., Sarwar, H. S., Imran, M., & Khan, G. M. (2016). Formulation and In Vitro Characterization of Thiolated Buccoadhesive Film of Fluconazole. AAPS PharmSciTech, 1-13.
- Nichols, R. L., & Florman, S. (2001). Clinical presentations of soft-tissue infections and surgical site infections. Clin Infect Dis, 33 Suppl 2, S84-93. doi: 10.1086/321862
- Oestem, H., & Tscheme, H. (1984). Pathophysiology and classification of soft tissue injuries associated with fractures. Fractures With Soft Tissue Injuries. Berlin, Germany: Springer- Verlag, 1-9.
- Partoazar, A., Kianvash, N., Darvishi, M., Nasoohi, S., Rezayat, S., & Bahador, A. (2016). Ethosomal curcumin promoted wound healing and reduced bacterial flora in second degree burn in rat. Drug research, 66(12), 660-665.
- Paul, W., & Sharma, C. P. (2004). Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs, 18(1), 18-23.
- Pierre, E., Perez-Polo, J. R., Mitchell, A. T., Matin, S., Foyt, H. L., & Herndon, D. N. (1997). Insulin-like growth factor-I liposomal gene transfer and systemic growth hormone stimulate wound healing. The Journal of burn care & rehabilitation, 18(4), 287-291.
- Quirynen, M., Bollen, C., Eyssen, H., & Van Steenberghe, D. (1994). Microbial penetration along the implant components of the Brånemark system®. An in vitro study. Clinical oral implants research, 5(4), 239-244.
- Rangari, N., Kalyankar, T., Puranik, P., & Chaudhari, S. (2012). Permeation studies of pioglitazone HCl from Ficus carica fruit mucilage matrix transdermal patches. International Journal of Pharmaceutical Sciences and Research, 3(10), 3927.
- Reimer, K., Vogt, P., Broegmann, B., Hauser, J., Rossbach, O., Kramer, A., . . . Fleischer, W. (2000). An innovative topical drug formulation for wound healing and infection treatment: in vitro and in vivo investigations of a povidone- iodine liposome hydrogel. Dermatology, 201(3), 235-241.
- Renuka, M., Nishadh, P., Jigar, S., & Tejal, M. (2012). Mucoadhesive wound healing film of Doxycycline Hydrochloride. International Journal of Drug Development and Research.
- Ribeiro, M. P., Espiga, A., Silva, D., Baptista, P., Henriques, J., Ferreira, C., . . . Chaves, P. (2009). Development of a new chitosan hydrogel for wound dressing. Wound repair and regeneration, 17(6), 817-824.
- Roldo, M., Hornof, M., Caliceti, P., & Bernkop- Schnürch, A. (2004). Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 115-121.
- Roselli, M., Finamore, A., Garaguso, I., Britti, M. S., & Mengheri, E. (2003). Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr, 133(12), 4077- 4082.
- Safferling, K., Sütterlin, T., Westphal, K., Ernst, C., Breuhahn, K., James, M., . . . Grabe, N. (2013). Wound healing revised: a novel reepithelialization mechanism revealed by in vitro and in silico models. J Cell Biol, 203(4), 691-709.
- Sandri, G., Bonferoni, M. C., D’Autilia, F., Rossi, S., Ferrari, F., Grisoli, P., . . . Perotti, C. (2013). Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 84-90.
- Saporito, F., Sandri, G., Bonferoni, M. C., Rossi, S., Boselli, C., Icaro Cornaglia, A., . . . Ferrari, F. (2017). Essential oil-loaded lipid nanoparticles for wound healing. International journal of nanomedicine, 13, 175-186. doi: 10.2147/ijn.s152529
- Shaunak, S., Thomas, S., Gianasi, E., Godwin, A., Jones, E., Teo, I., . . . Patterson, S. (2004). Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nature biotechnology, 22(8), 977.
- Shibuya, S., Ozawa, Y., Watanabe, K., Izuo, N., Toda, T., Yokote, K., & Shimizu, T. (2014). Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS One, 9(10), e109288.
- Sohail, M. F., Javed, I., Hussain, S. Z., Sarwar, S., Akhtar, S., Nadhman, A., . . . Shahnaz, G. (2016). Folate grafted thiolated chitosan enveloped nanoliposomes with enhanced oral bioavailability and anticancer activity ofdocetaxel. [10.1039/C6TB01348A]. Journal of Materials Chemistry B, 4(37), 6240-6248. doi: 10.1039/C6TB01348A
- Sohrabi, S., Haeri, A., Mahboubi, A., Mortazavi, A., & Dadashzadeh, S. (2016). Chitosan gel- embedded moxifloxacin niosomes: an efficient antimicrobial hybrid system for burn infection. International journal of biological macromolecules, 85, 625-633.
- Spellberg, B. (2009). Rising plague: the global threat from deadly bacteria and our dwindling arsenal to fight them: Prometheus Books.
- Stefanov, I., Hinojosa-Caballero, D., Maspoch, S., Hoyo, J., & Tzanov, T. (2018). Enzymatic synthesis of a thiolated chitosan-based wound dressing crosslinked with chicoric acid. Journal of Materials Chemistry B, 6(47), 7943-7953.
- Sudheesh Kumar, P., Lakshmanan, V.-K., Anilkumar, T., Ramya, C., Reshmi, P., Unnikrishnan, A., . . . Jayakumar, R. (2012). Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS applied materials & interfaces, 4(5), 2618-2629.
- Takeuchi, H., Matsui, Y., Yamamoto, H., & Kawashima, Y. (2003). Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. Journal of controlled release, 86(2), 235-242.
- Touitou, E., Dayan, N., Bergelson, L., Godin, B., & Eliaz, M. (2000). Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. Journal of Controlled Release, 65(3), 403-418. doi: https://doi.org/10.1016/S0168-3659(99)00222-9
- Williams, A. C., & Barry, B. W. (2012). Penetration enhancers. Adv Drug Deliv Rev, 64, 128-137. doi: https://doi.org/10.1016/j.addr.2012.09.032
- Wo, Y., Zhang, Z., Zhang, Y., Zhang, Z., Wang, K., Mao, X., . . . Chen, J. (2014). Enhanced in vivo delivery of 5-fluorouracil by ethosomal gels in rabbit ear hypertrophic scar model. International journal of molecular sciences, 15(12), 22786-22800.
- Wokovich, A. M., Prodduturi, S., Doub, W. H., Hussain, A. S., & Buhse, L. F. (2006). Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. European Journal of Pharmaceutics and Biopharmaceutics, 64(1), 1-8. doi: http://dx.doi.org/10.1016/j.ejpb.2006.03.009
- u, G., Cheng, L., Zhang, Q., Sun, Y., Chen, C., Xu, H., . . . Lang, M. (2016). In situ thiolated alginate hydrogel: instant formation and its application in hemostasis. Journal of biomaterials applications, 31(5), 721-729.
- Yang, G., Prestwich, G. D., & Mann, B. K. (2012). Thiolated carboxymethyl-hyaluronic-acid- based biomaterials enhance wound healing in rats, dogs, and horses. ISRN veterinary science, 2011.
- Yin, L., Fei, L., Cui, F., Tang, C., & Yin, C. (2007). Superporous hydrogels containing poly (acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials, 28(6), 1258-1266.
Cite this article
-
APA : Khan, R. A., Hamdard, S. A., & Sadia, H. (2021). Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing. Global Pharmaceutical Sciences Review, VI(I), 36-54 . https://doi.org/10.31703/gpsr.2021(VI-I).05
-
CHICAGO : Khan, Rabia Arshad, Salman Arshad Hamdard, and Haleema Sadia. 2021. "Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing." Global Pharmaceutical Sciences Review, VI (I): 36-54 doi: 10.31703/gpsr.2021(VI-I).05
-
HARVARD : KHAN, R. A., HAMDARD, S. A. & SADIA, H. 2021. Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing. Global Pharmaceutical Sciences Review, VI, 36-54 .
-
MHRA : Khan, Rabia Arshad, Salman Arshad Hamdard, and Haleema Sadia. 2021. "Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing." Global Pharmaceutical Sciences Review, VI: 36-54
-
MLA : Khan, Rabia Arshad, Salman Arshad Hamdard, and Haleema Sadia. "Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing." Global Pharmaceutical Sciences Review, VI.I (2021): 36-54 Print.
-
OXFORD : Khan, Rabia Arshad, Hamdard, Salman Arshad, and Sadia, Haleema (2021), "Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing", Global Pharmaceutical Sciences Review, VI (I), 36-54
-
TURABIAN : Khan, Rabia Arshad, Salman Arshad Hamdard, and Haleema Sadia. "Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing." Global Pharmaceutical Sciences Review VI, no. I (2021): 36-54 . https://doi.org/10.31703/gpsr.2021(VI-I).05