EMERGING TREND OF THIOLATED POLYMERSMATERIALS AND NANOMEDICINE IN WOUND HEALING

http://dx.doi.org/10.31703/gpsr.2021(VI-I).05      10.31703/gpsr.2021(VI-I).05      Published : Jun 2021
Authored by : Rabia Arshad Khan , Salman Arshad Hamdard , Haleema Sadia , Abbas Ali Naseem

05 Pages : 36-54

References

  • Ali, A., Sarhan, H. A., & Magdy, T. (2014). Preparation and characterization of phenytoin sodium niosomes for enhanced closure of skin injuries. Int J Pharm Pharm Sci, 6, 542-546.
  • Balogh, L., Hagnauer, G. L., Tomalia, D. A., & McManus, A. T. (2001). Antimicrobial dendrimer nanocomposites and a method of treating wounds: Google Patents.
  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. chem. soc, 73(1), 373-380.
  • Begam, T., Nagpal, A., & Singhal, R. (2003). A comparative study of swelling properties of hydrogels based on poly (acrylamide-co-methyl methacrylate) containing physical and chemical crosslinks. Journal of applied polymer science, 89(3), 779-786.
  • Bernkop-Schnurch, A. (2005). Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev, 57(11), 1569-1582. doi: 10.1016/j.addr.2005.07.002
  • Bernkop-Schnurch, A., Hornof, M., & Guggi, D. (2004). Thiolated chitosans. Eur J Pharm Biopharm, 57(1), 9-17.
  • Bowler, P. G. (2002). Wound pathophysiology, infection and therapeutic options. Annals of medicine, 34(6), 419-427.
  • Broughton 2nd, G., Janis, J. E., & Attinger, C. E. (2006). The basic science of wound healing. Plastic and reconstructive surgery, 117(7 Suppl), 12S-34S.
  • Caldon, N. B. (2013). Effect of Solid Lipid Nanoparticle-Encapsulated Antimicrobial Peptide on Keratinocyte Migration and Wound Healing: Uniformed Services University Of The Health Sciences Bethesda United States.
  • Carbinatto, F. M., De Castro, A. D., Evangelista, R. C., & Cury, B. S. (2014). Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian Journal of Pharmaceutical Sciences, 9(1), 27-34.
  • Carvalho, F. C., Bruschi, M. L., Evangelista, R. C., & Gremião, M. P. D. (2010). Mucoadhesive drug delivery systems. Brazilian Journal of Pharmaceutical Sciences, 46(1), 1-17.
  • Chidambara Murthy, K., Reddy, V. K., Veigas, J. M., & Murthy, U. D. (2004). Study on wound healing activity of Punica granatum peel. Journal of Medicinal Food, 7(2), 256-259.
  • Daunton, C., Kothari, S., Smith, L., & Steele, D. (2012). A history of materials and practices for wound management. Wound Practice & Research: Journal of the Australian Wound Management Association, 20(4), 174.
  • DeÄŸim, Z., Çelebi, N., AlemdaroÄŸlu, C., Deveci, M., Öztürk, S., & ÖzoÄŸul, C. (2011). Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing. International wound journal, 8(4), 343- 354.
  • Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings-a review. BioMedicine, 5(4), 22-22.
  • Dohmen, P. M., Weymann, A., Holinski, S., Linneweber, J., Geyer, T., & Konertz, W. (2011). Use of an antimicrobial skin sealant reduces surgical site infection in patients undergoing routine cardiac surgery. Surg Infect (Larchmt), 12(6), 475-481. doi: 10.1089/sur.2011.050
  • Dongargaonkar, A. A., Bowlin, G. L., & Yang, H. (2013). Electrospun blends of gelatin and gelatin–dendrimer conjugates as a wound- dressing and drug-delivery platform. Biomacromolecules, 14(11), 4038-4045.
  • Dumville, J. C., Gray, T. A., Walter, C. J., Sharp, C. A., & Page, T. (2014). Dressings for the prevention of surgical site infection. Cochrane Database Syst Rev(9), Cd003091. doi: 10.1002/14651858.CD003091.pub3
  • Godin, B., Touitou, E., Rubinstein, E., Athamna, A., & Athamna, M. (2005). A new approach for treatment of deep skin infections by an ethosomal antibiotic preparation: an in vivo study. J Antimicrob Chemother, 55(6), 989- 994.
  • Heggset, E. B. (2012). Enzymatic Degradation of Chitosans:-A study of the mode of action of selected chitinases and chitosanases.
  • Joshi, M., & Patravale, V. (2008). Nanostructured lipid carrier (NLC) based gel of celecoxib. International Journal of Pharmaceutics, 346(1),124-132. doi: https://doi.org/10.1016/j.ijpharm.2007.05.060
  • Kandavilli, S., Nair, V., & Panchagnula, R. (2002). Polymers in transdermal drug delivery systems. Pharmaceutical technology, 26(5), 62-81.
  • King, D. R., Cohn, S. M., Proctor, K. G., & Group, M. C. T. (2004). Modified rapid deployment hemostat bandage terminates bleeding in coagulopathic patients with severe visceral injuries. Journal of Trauma and Acute Care Surgery, 57(4), 756-759.
  • Küchler, S., Wolf, N. B., Heilmann, S., Weindl, G., Helfmann, J., Yahya, M. M., . . . Schäfer-Korting, M. (2010). 3D-wound healing model: influence of morphine and solid lipid nanoparticles. Journal of biotechnology, 148(1), 24-30.
  • Kühne, H., Ullmann, U., & Kühne, F. (1985). New aspects on the pathophysiology of wound infection and wound healing—the problem of lowered oxygen pressure in the tissue. Infection, 13(2), 52-56.
  • Kumar, S., Lakshmanan, V.-K., Raj, M., Biswas, R., Hiroshi, T., Nair, S. V., & Jayakumar, R. (2013). Evaluation of wound healing potential of β- chitin hydrogel/nano zinc oxide composite bandage. Pharmaceutical research, 30(2), 523- 537.
  • Kwon, M. J., An, S., Choi, S., Nam, K., Jung, H. S., Yoon, C. S., . . . Jung, S. J. (2012). Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. The journal of gene medicine, 14(4), 272-278.
  • Ladaviere, C., & Gref, R. (2015). Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Nanomedicine, 10(19), 3033- 3055.
  • Li, Z., Overend, C., Maitz, P., & Kennedy, P. (2012). Quality evaluation of meshed split-thickness skin grafts stored at 4° C in isotonic solutions and nutrient media by cell cultures. Burns, 38(6), 899-907.
  • Mishra, N., Pant, P., Porwal, A., Jaiswal, J., Aquib Samad, M., & Tiwari, S. (2016). Targeted Drug Delivery: A Review (Vol. 6).
  • Naz, K., Shahnaz, G., Ahmed, N., Qureshi, N. A., Sarwar, H. S., Imran, M., & Khan, G. M. (2016). Formulation and In Vitro Characterization of Thiolated Buccoadhesive Film of Fluconazole. AAPS PharmSciTech, 1-13.
  • Nichols, R. L., & Florman, S. (2001). Clinical presentations of soft-tissue infections and surgical site infections. Clin Infect Dis, 33 Suppl 2, S84-93. doi: 10.1086/321862
  • Oestem, H., & Tscheme, H. (1984). Pathophysiology and classification of soft tissue injuries associated with fractures. Fractures With Soft Tissue Injuries. Berlin, Germany: Springer- Verlag, 1-9.
  • Partoazar, A., Kianvash, N., Darvishi, M., Nasoohi, S., Rezayat, S., & Bahador, A. (2016). Ethosomal curcumin promoted wound healing and reduced bacterial flora in second degree burn in rat. Drug research, 66(12), 660-665.
  • Paul, W., & Sharma, C. P. (2004). Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs, 18(1), 18-23.
  • Pierre, E., Perez-Polo, J. R., Mitchell, A. T., Matin, S., Foyt, H. L., & Herndon, D. N. (1997). Insulin-like growth factor-I liposomal gene transfer and systemic growth hormone stimulate wound healing. The Journal of burn care & rehabilitation, 18(4), 287-291.
  • Quirynen, M., Bollen, C., Eyssen, H., & Van Steenberghe, D. (1994). Microbial penetration along the implant components of the BrÃ¥nemark system®. An in vitro study. Clinical oral implants research, 5(4), 239-244.
  • Rangari, N., Kalyankar, T., Puranik, P., & Chaudhari, S. (2012). Permeation studies of pioglitazone HCl from Ficus carica fruit mucilage matrix transdermal patches. International Journal of Pharmaceutical Sciences and Research, 3(10), 3927.
  • Reimer, K., Vogt, P., Broegmann, B., Hauser, J., Rossbach, O., Kramer, A., . . . Fleischer, W. (2000). An innovative topical drug formulation for wound healing and infection treatment: in vitro and in vivo investigations of a povidone- iodine liposome hydrogel. Dermatology, 201(3), 235-241.
  • Renuka, M., Nishadh, P., Jigar, S., & Tejal, M. (2012). Mucoadhesive wound healing film of Doxycycline Hydrochloride. International Journal of Drug Development and Research.
  • Ribeiro, M. P., Espiga, A., Silva, D., Baptista, P., Henriques, J., Ferreira, C., . . . Chaves, P. (2009). Development of a new chitosan hydrogel for wound dressing. Wound repair and regeneration, 17(6), 817-824.
  • Roldo, M., Hornof, M., Caliceti, P., & Bernkop- Schnürch, A. (2004). Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 115-121.
  • Roselli, M., Finamore, A., Garaguso, I., Britti, M. S., & Mengheri, E. (2003). Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr, 133(12), 4077- 4082.
  • Safferling, K., Sütterlin, T., Westphal, K., Ernst, C., Breuhahn, K., James, M., . . . Grabe, N. (2013). Wound healing revised: a novel reepithelialization mechanism revealed by in vitro and in silico models. J Cell Biol, 203(4), 691-709.
  • Sandri, G., Bonferoni, M. C., D’Autilia, F., Rossi, S., Ferrari, F., Grisoli, P., . . . Perotti, C. (2013). Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 84-90.
  • Saporito, F., Sandri, G., Bonferoni, M. C., Rossi, S., Boselli, C., Icaro Cornaglia, A., . . . Ferrari, F. (2017). Essential oil-loaded lipid nanoparticles for wound healing. International journal of nanomedicine, 13, 175-186. doi: 10.2147/ijn.s152529
  • Shaunak, S., Thomas, S., Gianasi, E., Godwin, A., Jones, E., Teo, I., . . . Patterson, S. (2004). Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nature biotechnology, 22(8), 977.
  • Shibuya, S., Ozawa, Y., Watanabe, K., Izuo, N., Toda, T., Yokote, K., & Shimizu, T. (2014). Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS One, 9(10), e109288.
  • Sohail, M. F., Javed, I., Hussain, S. Z., Sarwar, S., Akhtar, S., Nadhman, A., . . . Shahnaz, G. (2016). Folate grafted thiolated chitosan enveloped nanoliposomes with enhanced oral bioavailability and anticancer activity ofdocetaxel. [10.1039/C6TB01348A]. Journal of Materials Chemistry B, 4(37), 6240-6248. doi: 10.1039/C6TB01348A
  • Sohrabi, S., Haeri, A., Mahboubi, A., Mortazavi, A., & Dadashzadeh, S. (2016). Chitosan gel- embedded moxifloxacin niosomes: an efficient antimicrobial hybrid system for burn infection. International journal of biological macromolecules, 85, 625-633.
  • Spellberg, B. (2009). Rising plague: the global threat from deadly bacteria and our dwindling arsenal to fight them: Prometheus Books.
  • Stefanov, I., Hinojosa-Caballero, D., Maspoch, S., Hoyo, J., & Tzanov, T. (2018). Enzymatic synthesis of a thiolated chitosan-based wound dressing crosslinked with chicoric acid. Journal of Materials Chemistry B, 6(47), 7943-7953.
  • Sudheesh Kumar, P., Lakshmanan, V.-K., Anilkumar, T., Ramya, C., Reshmi, P., Unnikrishnan, A., . . . Jayakumar, R. (2012). Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS applied materials & interfaces, 4(5), 2618-2629.
  • Takeuchi, H., Matsui, Y., Yamamoto, H., & Kawashima, Y. (2003). Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. Journal of controlled release, 86(2), 235-242.
  • Touitou, E., Dayan, N., Bergelson, L., Godin, B., & Eliaz, M. (2000). Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. Journal of Controlled Release, 65(3), 403-418. doi: https://doi.org/10.1016/S0168-3659(99)00222-9
  • Williams, A. C., & Barry, B. W. (2012). Penetration enhancers. Adv Drug Deliv Rev, 64, 128-137. doi: https://doi.org/10.1016/j.addr.2012.09.032
  • Wo, Y., Zhang, Z., Zhang, Y., Zhang, Z., Wang, K., Mao, X., . . . Chen, J. (2014). Enhanced in vivo delivery of 5-fluorouracil by ethosomal gels in rabbit ear hypertrophic scar model. International journal of molecular sciences, 15(12), 22786-22800.
  • Wokovich, A. M., Prodduturi, S., Doub, W. H., Hussain, A. S., & Buhse, L. F. (2006). Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. European Journal of Pharmaceutics and Biopharmaceutics, 64(1), 1-8. doi: http://dx.doi.org/10.1016/j.ejpb.2006.03.009
  • u, G., Cheng, L., Zhang, Q., Sun, Y., Chen, C., Xu, H., . . . Lang, M. (2016). In situ thiolated alginate hydrogel: instant formation and its application in hemostasis. Journal of biomaterials applications, 31(5), 721-729.
  • Yang, G., Prestwich, G. D., & Mann, B. K. (2012). Thiolated carboxymethyl-hyaluronic-acid- based biomaterials enhance wound healing in rats, dogs, and horses. ISRN veterinary science, 2011.
  • Yin, L., Fei, L., Cui, F., Tang, C., & Yin, C. (2007). Superporous hydrogels containing poly (acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials, 28(6), 1258-1266.
  • Ali, A., Sarhan, H. A., & Magdy, T. (2014). Preparation and characterization of phenytoin sodium niosomes for enhanced closure of skin injuries. Int J Pharm Pharm Sci, 6, 542-546.
  • Balogh, L., Hagnauer, G. L., Tomalia, D. A., & McManus, A. T. (2001). Antimicrobial dendrimer nanocomposites and a method of treating wounds: Google Patents.
  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. chem. soc, 73(1), 373-380.
  • Begam, T., Nagpal, A., & Singhal, R. (2003). A comparative study of swelling properties of hydrogels based on poly (acrylamide-co-methyl methacrylate) containing physical and chemical crosslinks. Journal of applied polymer science, 89(3), 779-786.
  • Bernkop-Schnurch, A. (2005). Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev, 57(11), 1569-1582. doi: 10.1016/j.addr.2005.07.002
  • Bernkop-Schnurch, A., Hornof, M., & Guggi, D. (2004). Thiolated chitosans. Eur J Pharm Biopharm, 57(1), 9-17.
  • Bowler, P. G. (2002). Wound pathophysiology, infection and therapeutic options. Annals of medicine, 34(6), 419-427.
  • Broughton 2nd, G., Janis, J. E., & Attinger, C. E. (2006). The basic science of wound healing. Plastic and reconstructive surgery, 117(7 Suppl), 12S-34S.
  • Caldon, N. B. (2013). Effect of Solid Lipid Nanoparticle-Encapsulated Antimicrobial Peptide on Keratinocyte Migration and Wound Healing: Uniformed Services University Of The Health Sciences Bethesda United States.
  • Carbinatto, F. M., De Castro, A. D., Evangelista, R. C., & Cury, B. S. (2014). Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian Journal of Pharmaceutical Sciences, 9(1), 27-34.
  • Carvalho, F. C., Bruschi, M. L., Evangelista, R. C., & Gremião, M. P. D. (2010). Mucoadhesive drug delivery systems. Brazilian Journal of Pharmaceutical Sciences, 46(1), 1-17.
  • Chidambara Murthy, K., Reddy, V. K., Veigas, J. M., & Murthy, U. D. (2004). Study on wound healing activity of Punica granatum peel. Journal of Medicinal Food, 7(2), 256-259.
  • Daunton, C., Kothari, S., Smith, L., & Steele, D. (2012). A history of materials and practices for wound management. Wound Practice & Research: Journal of the Australian Wound Management Association, 20(4), 174.
  • DeÄŸim, Z., Çelebi, N., AlemdaroÄŸlu, C., Deveci, M., Öztürk, S., & ÖzoÄŸul, C. (2011). Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing. International wound journal, 8(4), 343- 354.
  • Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings-a review. BioMedicine, 5(4), 22-22.
  • Dohmen, P. M., Weymann, A., Holinski, S., Linneweber, J., Geyer, T., & Konertz, W. (2011). Use of an antimicrobial skin sealant reduces surgical site infection in patients undergoing routine cardiac surgery. Surg Infect (Larchmt), 12(6), 475-481. doi: 10.1089/sur.2011.050
  • Dongargaonkar, A. A., Bowlin, G. L., & Yang, H. (2013). Electrospun blends of gelatin and gelatin–dendrimer conjugates as a wound- dressing and drug-delivery platform. Biomacromolecules, 14(11), 4038-4045.
  • Dumville, J. C., Gray, T. A., Walter, C. J., Sharp, C. A., & Page, T. (2014). Dressings for the prevention of surgical site infection. Cochrane Database Syst Rev(9), Cd003091. doi: 10.1002/14651858.CD003091.pub3
  • Godin, B., Touitou, E., Rubinstein, E., Athamna, A., & Athamna, M. (2005). A new approach for treatment of deep skin infections by an ethosomal antibiotic preparation: an in vivo study. J Antimicrob Chemother, 55(6), 989- 994.
  • Heggset, E. B. (2012). Enzymatic Degradation of Chitosans:-A study of the mode of action of selected chitinases and chitosanases.
  • Joshi, M., & Patravale, V. (2008). Nanostructured lipid carrier (NLC) based gel of celecoxib. International Journal of Pharmaceutics, 346(1),124-132. doi: https://doi.org/10.1016/j.ijpharm.2007.05.060
  • Kandavilli, S., Nair, V., & Panchagnula, R. (2002). Polymers in transdermal drug delivery systems. Pharmaceutical technology, 26(5), 62-81.
  • King, D. R., Cohn, S. M., Proctor, K. G., & Group, M. C. T. (2004). Modified rapid deployment hemostat bandage terminates bleeding in coagulopathic patients with severe visceral injuries. Journal of Trauma and Acute Care Surgery, 57(4), 756-759.
  • Küchler, S., Wolf, N. B., Heilmann, S., Weindl, G., Helfmann, J., Yahya, M. M., . . . Schäfer-Korting, M. (2010). 3D-wound healing model: influence of morphine and solid lipid nanoparticles. Journal of biotechnology, 148(1), 24-30.
  • Kühne, H., Ullmann, U., & Kühne, F. (1985). New aspects on the pathophysiology of wound infection and wound healing—the problem of lowered oxygen pressure in the tissue. Infection, 13(2), 52-56.
  • Kumar, S., Lakshmanan, V.-K., Raj, M., Biswas, R., Hiroshi, T., Nair, S. V., & Jayakumar, R. (2013). Evaluation of wound healing potential of β- chitin hydrogel/nano zinc oxide composite bandage. Pharmaceutical research, 30(2), 523- 537.
  • Kwon, M. J., An, S., Choi, S., Nam, K., Jung, H. S., Yoon, C. S., . . . Jung, S. J. (2012). Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. The journal of gene medicine, 14(4), 272-278.
  • Ladaviere, C., & Gref, R. (2015). Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Nanomedicine, 10(19), 3033- 3055.
  • Li, Z., Overend, C., Maitz, P., & Kennedy, P. (2012). Quality evaluation of meshed split-thickness skin grafts stored at 4° C in isotonic solutions and nutrient media by cell cultures. Burns, 38(6), 899-907.
  • Mishra, N., Pant, P., Porwal, A., Jaiswal, J., Aquib Samad, M., & Tiwari, S. (2016). Targeted Drug Delivery: A Review (Vol. 6).
  • Naz, K., Shahnaz, G., Ahmed, N., Qureshi, N. A., Sarwar, H. S., Imran, M., & Khan, G. M. (2016). Formulation and In Vitro Characterization of Thiolated Buccoadhesive Film of Fluconazole. AAPS PharmSciTech, 1-13.
  • Nichols, R. L., & Florman, S. (2001). Clinical presentations of soft-tissue infections and surgical site infections. Clin Infect Dis, 33 Suppl 2, S84-93. doi: 10.1086/321862
  • Oestem, H., & Tscheme, H. (1984). Pathophysiology and classification of soft tissue injuries associated with fractures. Fractures With Soft Tissue Injuries. Berlin, Germany: Springer- Verlag, 1-9.
  • Partoazar, A., Kianvash, N., Darvishi, M., Nasoohi, S., Rezayat, S., & Bahador, A. (2016). Ethosomal curcumin promoted wound healing and reduced bacterial flora in second degree burn in rat. Drug research, 66(12), 660-665.
  • Paul, W., & Sharma, C. P. (2004). Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs, 18(1), 18-23.
  • Pierre, E., Perez-Polo, J. R., Mitchell, A. T., Matin, S., Foyt, H. L., & Herndon, D. N. (1997). Insulin-like growth factor-I liposomal gene transfer and systemic growth hormone stimulate wound healing. The Journal of burn care & rehabilitation, 18(4), 287-291.
  • Quirynen, M., Bollen, C., Eyssen, H., & Van Steenberghe, D. (1994). Microbial penetration along the implant components of the BrÃ¥nemark system®. An in vitro study. Clinical oral implants research, 5(4), 239-244.
  • Rangari, N., Kalyankar, T., Puranik, P., & Chaudhari, S. (2012). Permeation studies of pioglitazone HCl from Ficus carica fruit mucilage matrix transdermal patches. International Journal of Pharmaceutical Sciences and Research, 3(10), 3927.
  • Reimer, K., Vogt, P., Broegmann, B., Hauser, J., Rossbach, O., Kramer, A., . . . Fleischer, W. (2000). An innovative topical drug formulation for wound healing and infection treatment: in vitro and in vivo investigations of a povidone- iodine liposome hydrogel. Dermatology, 201(3), 235-241.
  • Renuka, M., Nishadh, P., Jigar, S., & Tejal, M. (2012). Mucoadhesive wound healing film of Doxycycline Hydrochloride. International Journal of Drug Development and Research.
  • Ribeiro, M. P., Espiga, A., Silva, D., Baptista, P., Henriques, J., Ferreira, C., . . . Chaves, P. (2009). Development of a new chitosan hydrogel for wound dressing. Wound repair and regeneration, 17(6), 817-824.
  • Roldo, M., Hornof, M., Caliceti, P., & Bernkop- Schnürch, A. (2004). Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 115-121.
  • Roselli, M., Finamore, A., Garaguso, I., Britti, M. S., & Mengheri, E. (2003). Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr, 133(12), 4077- 4082.
  • Safferling, K., Sütterlin, T., Westphal, K., Ernst, C., Breuhahn, K., James, M., . . . Grabe, N. (2013). Wound healing revised: a novel reepithelialization mechanism revealed by in vitro and in silico models. J Cell Biol, 203(4), 691-709.
  • Sandri, G., Bonferoni, M. C., D’Autilia, F., Rossi, S., Ferrari, F., Grisoli, P., . . . Perotti, C. (2013). Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 84-90.
  • Saporito, F., Sandri, G., Bonferoni, M. C., Rossi, S., Boselli, C., Icaro Cornaglia, A., . . . Ferrari, F. (2017). Essential oil-loaded lipid nanoparticles for wound healing. International journal of nanomedicine, 13, 175-186. doi: 10.2147/ijn.s152529
  • Shaunak, S., Thomas, S., Gianasi, E., Godwin, A., Jones, E., Teo, I., . . . Patterson, S. (2004). Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nature biotechnology, 22(8), 977.
  • Shibuya, S., Ozawa, Y., Watanabe, K., Izuo, N., Toda, T., Yokote, K., & Shimizu, T. (2014). Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS One, 9(10), e109288.
  • Sohail, M. F., Javed, I., Hussain, S. Z., Sarwar, S., Akhtar, S., Nadhman, A., . . . Shahnaz, G. (2016). Folate grafted thiolated chitosan enveloped nanoliposomes with enhanced oral bioavailability and anticancer activity ofdocetaxel. [10.1039/C6TB01348A]. Journal of Materials Chemistry B, 4(37), 6240-6248. doi: 10.1039/C6TB01348A
  • Sohrabi, S., Haeri, A., Mahboubi, A., Mortazavi, A., & Dadashzadeh, S. (2016). Chitosan gel- embedded moxifloxacin niosomes: an efficient antimicrobial hybrid system for burn infection. International journal of biological macromolecules, 85, 625-633.
  • Spellberg, B. (2009). Rising plague: the global threat from deadly bacteria and our dwindling arsenal to fight them: Prometheus Books.
  • Stefanov, I., Hinojosa-Caballero, D., Maspoch, S., Hoyo, J., & Tzanov, T. (2018). Enzymatic synthesis of a thiolated chitosan-based wound dressing crosslinked with chicoric acid. Journal of Materials Chemistry B, 6(47), 7943-7953.
  • Sudheesh Kumar, P., Lakshmanan, V.-K., Anilkumar, T., Ramya, C., Reshmi, P., Unnikrishnan, A., . . . Jayakumar, R. (2012). Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS applied materials & interfaces, 4(5), 2618-2629.
  • Takeuchi, H., Matsui, Y., Yamamoto, H., & Kawashima, Y. (2003). Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. Journal of controlled release, 86(2), 235-242.
  • Touitou, E., Dayan, N., Bergelson, L., Godin, B., & Eliaz, M. (2000). Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. Journal of Controlled Release, 65(3), 403-418. doi: https://doi.org/10.1016/S0168-3659(99)00222-9
  • Williams, A. C., & Barry, B. W. (2012). Penetration enhancers. Adv Drug Deliv Rev, 64, 128-137. doi: https://doi.org/10.1016/j.addr.2012.09.032
  • Wo, Y., Zhang, Z., Zhang, Y., Zhang, Z., Wang, K., Mao, X., . . . Chen, J. (2014). Enhanced in vivo delivery of 5-fluorouracil by ethosomal gels in rabbit ear hypertrophic scar model. International journal of molecular sciences, 15(12), 22786-22800.
  • Wokovich, A. M., Prodduturi, S., Doub, W. H., Hussain, A. S., & Buhse, L. F. (2006). Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. European Journal of Pharmaceutics and Biopharmaceutics, 64(1), 1-8. doi: http://dx.doi.org/10.1016/j.ejpb.2006.03.009
  • u, G., Cheng, L., Zhang, Q., Sun, Y., Chen, C., Xu, H., . . . Lang, M. (2016). In situ thiolated alginate hydrogel: instant formation and its application in hemostasis. Journal of biomaterials applications, 31(5), 721-729.
  • Yang, G., Prestwich, G. D., & Mann, B. K. (2012). Thiolated carboxymethyl-hyaluronic-acid- based biomaterials enhance wound healing in rats, dogs, and horses. ISRN veterinary science, 2011.
  • Yin, L., Fei, L., Cui, F., Tang, C., & Yin, C. (2007). Superporous hydrogels containing poly (acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials, 28(6), 1258-1266.

Cite this article

    APA : Khan, R. A., Hamdard, S. A., & Sadia, H. (2021). Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing. Global Pharmaceutical Sciences Review, VI(I), 36-54 . https://doi.org/10.31703/gpsr.2021(VI-I).05
    CHICAGO : Khan, Rabia Arshad, Salman Arshad Hamdard, and Haleema Sadia. 2021. "Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing." Global Pharmaceutical Sciences Review, VI (I): 36-54 doi: 10.31703/gpsr.2021(VI-I).05
    HARVARD : KHAN, R. A., HAMDARD, S. A. & SADIA, H. 2021. Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing. Global Pharmaceutical Sciences Review, VI, 36-54 .
    MHRA : Khan, Rabia Arshad, Salman Arshad Hamdard, and Haleema Sadia. 2021. "Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing." Global Pharmaceutical Sciences Review, VI: 36-54
    MLA : Khan, Rabia Arshad, Salman Arshad Hamdard, and Haleema Sadia. "Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing." Global Pharmaceutical Sciences Review, VI.I (2021): 36-54 Print.
    OXFORD : Khan, Rabia Arshad, Hamdard, Salman Arshad, and Sadia, Haleema (2021), "Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing", Global Pharmaceutical Sciences Review, VI (I), 36-54
    TURABIAN : Khan, Rabia Arshad, Salman Arshad Hamdard, and Haleema Sadia. "Emerging Trend of Thiolated Polymers/materials and nanomedicine in wound healing." Global Pharmaceutical Sciences Review VI, no. I (2021): 36-54 . https://doi.org/10.31703/gpsr.2021(VI-I).05