Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries
Antimicrobial resistance in five countries including USA, India, China, UK, and Pakistan. The analysis reveals high and very high levels of AMR in these countries, with respiratory, urinary tract, bloodstream, and surgical site infections being the most common. The identified resistant pathogens include E. coli, K. pneumonia, P. aeruginosa, Acinetobacter baumannii, and Enterobacteriaceae. Carbapenems, fluoroquinolones, and cephalosporins are commonly used antibiotics, but resistance mechanisms such as enzyme production and altered target sites contribute to the problem. The estimated annual costs associated with AMR are substantial, with the USA spending $35 billion, India $2.5 billion, China $12 billion, UK £1.2 billion, and Pakistan PKR 361.9 million. Various reporting agencies, including the CDC, WHO, and national health organizations, monitor and report on AMR. The abstract also highlights resistance mechanisms such as extended-spectrum beta-lactamase (ESBL), methicillin-resistant Staphylococcus aureus (MRSA), multi-drug resistance (MDR), and carbapenem-resistant Enterobacteriaceae (CRE), along with their respective costs. Our findings underscore the urgent need for global collaboration to address AMR effectively. Strategies must be improved surveillance systems, liable antibiotic use, and the development of new antimicrobial agents are decisive to combat the growing threat of AMR and preserve the effectiveness of existing antibiotics.
-
Antimicrobial Resistance, Comparative Analysis, Bacterial Infections, Antibiotic Resistance Mechanisms of MDR, ESBL
-
(1) Ayesha
Department of Allied Health Sciences, Superior University, Lahore, Punjab, Pakistan.
(2) Saba Shafi
Key Laboratory of Salineââ¬âalkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
(3) Noor Fatima
Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Punjab, Pakistan.
(4) Muhammad Zahid Ali
Department of Microbiology, Yahya Welfare Complex Hospital, Haripur, KP, Pakistan.
(5) Shah Zeb
Department of Microbiology and Infection Prevention and Control, Pakistan Kidney and Liver Institute and Research Center, Lahore, Punjab, Pakistan.
(6) Irum Basheer
Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
- Acar, J., & Röstel, B. (2001). Antimicrobial resistance: an overview. Revue scientifique et technique (International Office of Epizootics), 20(3), 797–810. https://doi.org/10.20506/rst.20.3.1309
- Ahmed, N., Tahir, K., Aslam, S., Cheema, S. M., Rabaan, A. A., Turkistani, S. A., Garout, M., Halwani, M. A., Aljeldah, M., Al Shammari, B. R., Sabour, A. A., Alshiekheid, M. A., Alshamrani, S. A., Azmi, R. A., Al-Absi, G. H., Zeb, S., & Yean, C. Y. (2022). Heavy Metal (Arsenic) Induced Antibiotic Resistance among Extended-Spectrum β-Lactamase (ESBL) Producing Bacteria of Nosocomial Origin. Pharmaceuticals, 15(11), 1426. https://doi.org/10.3390/ph15111426
- Algammal, A. M., Hetta, H. F., Elkelish, A., Alkhalifah, D. H. H., Hozzein, W. N., Batiha, G. E.-S., El Nahhas, N., & Mabrok, M. A. (2020). Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infection and Drug Resistance, 13, 3255–3265. https://doi.org/10.2147/IDR.S272733
- Andes, D., & Craig, W. A. (2005). Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clinical Microbiology and Infection, 11, 10–17. https://doi.org/10.1111/j.1469-0691.2005.01265.x
- Boyanova, L., Markovska, R., & Mitov, I. (2019). Multidrug resistance in anaerobes. Future Microbiology, 14(12), 1055–1064. https://doi.org/10.2217/fmb-2019-0132
- Chakrapani, G., Zare, M., & Ramakrishna, S. (2022). Current Trends and Definitions in High-performance Antimicrobial Strategies. Current Opinion in Biomedical Engineering, 100407. https://doi.org/10.1016/j.cobme.2022.100407
- Coque, T. M., Baquero, F., & Cantón, R. (2008). Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance, 13(47). https://doi.org/10.2807/ese.13.47.19044-en
- Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12(12), 3903–3910. https://doi.org/10.2147/idr.s234610
- Dai, L., Sahin, O., Grover, M., & Zhang, Q. (2020). New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Translational Research, 223, 76–88 . https://doi.org/10.1016/j.trsl.2020.04.009
- Dantas Palmeira, J., & Ferreira, H. M. N. (2020). Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production – a threat around the world. Heliyon, 6(1), e03206. https://doi.org/10.1016/j.heliyon.2020.e03206
- Ding, Y., Wang, Y., Hsia, Y., Sharland, M., & Heath, P. T. (2019). Systematic review of carbapenem-resistant Enterobacteriaceae causing neonatal sepsis in China. Annals of Clinical Microbiology and Antimicrobials, 18(1). https://doi.org/10.1186/s12941-019-0334-9
- Dunachie, S. J., Day, N. P., & Dolecek, C. J. (2020). The challenges of estimating the human global burden of disease of antimicrobial resistant bacteria. Current Opinion in Microbiology, 57, 95–101. https://doi.org/10.1016/j.mib.2020.09.013
- Han, R., Shi, Q., Wu, S., Yin, D., Peng, M., Dong, D., Zheng, Y., Guo, Y., Zhang, R., & Hu, F. (2020). Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00314
- Harun, Md. G. D., Anwar, M. M. U., Sumon, S. A., Hassan, Md. Z., Mohona, T. M., Rahman, A., Abdullah, S. A. H. M., Islam, M. S., Kaydos-Daniels, S. C., & Styczynski, A. R. (2022). Rationale and guidance for strengthening infection prevention and control measures and antimicrobial stewardship programs in Bangladesh: a study protocol. BMC Health Services Research, 22(1), 1–11. https://doi.org/10.1186/s12913-022-08603-0
- Hofer, U. (2018). The cost of antimicrobial resistance. Nature Reviews Microbiology, 17(1), 3–3. https://doi.org/10.1038/s41579-018-0125-x
- Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176–187. https://doi.org/10.1016/s0140-6736(15)00473-0
- Iwu, C. D., & Patrick, S. M. (2021). An insight into the implementation of the global action plan on antimicrobial resistance in the WHO African region: A roadmap for action. International Journal of Antimicrobial Agents, 58(4), 106411. https://doi.org/10.1016/j.ijantimicag.2021.106411
- Johnson, N. L., Hayes, L. D., Brown, K., Hoo, E., & Ethier, K. A. (2014). CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors--United States, 2005-2013. Morbidity and Mortality Weekly Report (MMWR), 63(4), 3–27.
- Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). Evidence-Based Complementary and Alternative Medicine, 2021, 1–30. https://doi.org/10.1155/2021/3663315
- Lacotte, Y., Ã…rdal, C., & Ploy, M.-C. (2020). Infection prevention and control research priorities: what do we need to combat healthcare-associated infections and antimicrobial resistance? Results of a narrative literature review and survey analysis. Antimicrobial Resistance & Infection Control, 9(1). https://doi.org/10.1186/s13756-020-00801-x
- Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K. M., Wertheim, H. F. L., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., & Kariuki, S. (2013). Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057–1098. https://doi.org/10.1016/s1473-3099(13)70318-9
- Limmathurotsakul, D., Dunachie, S., Fukuda, K., Feasey, N. A., Okeke, I. N., Holmes, A. H., Moore, C. E., Dolecek, C., van Doorn, H. R., Shetty, N., Lopez, A. D., & Peacock, S. J. (2019). Improving the estimation of the global burden of antimicrobial resistant infections. The Lancet Infectious Diseases, 19(11), e392–e398. https://doi.org/10.1016/s1473-3099(19)30276-2
- MacKinnon, M. C., Sargeant, J. M., Pearl, D. L., Reid-Smith, R. J., Carson, C. A., Parmley, E. J., & McEwen, S. A. (2020). Evaluation of the health and healthcare system burden due to antimicrobial-resistant Escherichia coli infections in humans: a systematic review and meta-analysis. Antimicrobial Resistance & Infection Control, 9(1), 1–22. https://doi.org/10.1186/s13756-020-00863-x
- Mehdi, M. M., Abbas, A., Javed, S., Rehman, A., Ahmad, A., Abbas, M., ... & Zeb, S. (2023). The CRISPR-Cas System: How It Works In Bacteria And How It Can Be Used To Encounter Antimicrobial Resistant Pathogens. Journal of Pharmaceutical Negative Results, 14(3), 3681-3694. https://doi.org/10.47750/pnr.2023.14.03.461
- Melzer, M., & Petersen, I. (2007). Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. Journal of Infection, 55(3), 254–259. https://doi.org/10.1016/j.jinf.2007.04.007
- Murray, C. J. (2022). Global Burden of Bacterial Antimicrobial Resistance in 2019: a Systematic Analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
- Okeke, I. N., Laxminarayan, R., Bhutta, Z. A., Duse, A. G., Jenkins, P., O’Brien, T. F., Pablos-Mendez, A., & Klugman, K. P. (2005). Antimicrobial resistance in developing countries. Part I: recent trends and current status. The Lancet. Infectious Diseases, 5(8), 481–493. https://doi.org/10.1016/S1473-3099(05)70189-4
- Okunogbe, A., Nugent, R., Spencer, G., Powis, J., Ralston, J., & Wilding, J. (2022). Economic impacts of overweight and obesity: current and future estimates for 161 countries. BMJ Global Health, 7(9), 481–493. https://doi.org/10.1136/bmjgh-2022-009773
- Omeiri, N. E., Beith, A., Bruinsma, N., Caipo, M. L., Barcos, L. O., Mesplet, M., Barrio, L. D., Minassian, M., Arias, I. C., Vásquez, G. A. N., Corrales, M. L., & Ramon-Pardo, P. (2023). Driving multisectoral antimicrobial resistance action in South America: Lessons learned from implementing an enhanced tripartite AMR country self-assessment tool. 16, 100474–100474. https://doi.org/10.1016/j.onehlt.2022.100474
- Organization, W. H. (2002). The world health report 2002: reducing risks, promoting healthy life. World Health Organization.
- Organization, W. H. (2008). World Health Report 2008 (The) Chinese. World Health Organization.
- Otsuka, Y. (2020). Potent Antibiotics Active against Multidrug-Resistant Gram-Negative Bacteria. Chemical and Pharmaceutical Bulletin, 68(3), 182–190. https://doi.org/10.1248/cpb.c19-00842
- Paramasivam, R., Gopal, D. R., Dhandapani, R., Subbarayalu, R., Elangovan, M. P., Prabhu, B., Veerappan, V., Nandheeswaran, A., Paramasivam, S., & Saravanan, M. (2023). Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis. Infect Drug Resist, Volume 16(6), 155–178. https://doi.org/10.2147/idr.s384776
- Senok, A. C., Khanfar, H. S., Bindayna, K. M., & Botta, G. A. (2009). Extended spectrum beta-lactamases (ESBL) in Escherichia coli and Klebsiella pneumoniae: trends in the hospital and community settings. The Journal of Infection in Developing Countries, 3(04), 295–299. https://doi.org/10.3855/jidc.127
- Serra-Burriel, M., Keys, M., Campillo-Artero, C., Agodi, A., Barchitta, M., Gikas, A., Palos, C., & López-Casasnovas, G. (2020). Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS ONE, 15(1). https://doi.org/10.1371/journal.pone.0227139
- Shahzeb, K., & Iqra, R. (2019). Threats of bioterrorism in public health, Epidemiological clue, Detection and Safety pre-cautions for outbreaks. Open Journal of Bacteriology, 3(1), 011–015. https://doi.org/10.17352/ojb.000011
- Stefani, S., Chung, D. R., Lindsay, J. A., Friedrich, A. W., Kearns, A. M., Westh, H., & MacKenzie, F. M. (2012). Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. International Journal of Antimicrobial Agents, 39(4), 273–282. https://doi.org/10.1016/j.ijantimicag.2011.09.030
- Suay-GarcÃa, B., & Pérez-Gracia, M. (2019). Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics, 8(3), 122. https://doi.org/10.3390/antibiotics8030122
- Swami, O. C. (2014). Strategies to Combat Antimicrobial Resistance. JOURNAL of CLINICAL and DIAGNOSTIC RESEARCH, 8(7). https://doi.org/10.7860/jcdr/2014/8925.4529
- Tacconelli, E., Sifakis, F., Harbarth, S., Schrijver, R., van Mourik, M., Voss, A., Sharland, M., Rajendran, N. B., RodrÃguez-Baño, J., Bielicki, J., de Kraker, M.,
- Gandra, S., Gastmeier, P., Gilchrist, K., Gikas, A., Gladstone, B. P., Goossens, H., Jafri, H., Kahlmeter, G., & Leus, F. (2018). Surveillance for control of antimicrobial resistance. The Lancet Infectious Diseases, 18(3), e99–e106. https://doi.org/10.1016/S1473-3099(17)30485-1
- Thanh Dong, L., V. Espinoza, H., & Luis Espinoza, J. (2020). Emerging superbugs: The threat of Carbapenem Resistant Enterobacteriaceae. AIMS Microbiology, 7(3), 176–182. https://doi.org/10.3934/microbiol.2020012
- Tilahun, M., kassa, Y., Gedefie, A., & Belete, M. A. (2021). Emerging Carbapenem-Resistant Enterobacteriaceae Infection, Its Epidemiology and Novel Treatment Options: A Review. Infection and Drug Resistance, Volume 14, 4363–4374 . https://doi.org/10.2147/idr.s337611
- Villanueva, P., Coffin, S. E., Mekasha, A., McMullan, B., Cotton, M. F., & Bryant, P. A. (2022). Comparison of Antimicrobial Stewardship and Infection Prevention and Control Activities and Resources between Low-/Middle- and High-income Countries. Pediatric Infectious Disease Journal, 41(3S), S3–S9. https://doi.org/10.1097/inf.0000000000003318
- Wernli, D., Harbarth, S., Levrat, N., & Pittet, D. (2022). A “whole of United Nations approach†to tackle antimicrobial resistance? A mapping of the mandate and activities of international organisations. BMJ Global Health, 7(5), e008181. https://doi.org/10.1136/bmjgh-2021-008181
- Wozniak, T. M., Barnsbee, L., Lee, X. J., & Pacella, R. E. (2019). Using the best available data to estimate the cost of antimicrobial resistance: a systematic review. Antimicrobial Resistance & Infection Control, 8(1). https://doi.org/10.1186/s13756-019-0472-z
- Yuan, B., Liu, J., Deng, Z., Wei, L., Li, W., Dou, Y., Chen, Z., Zhang, C., Xia, Y., Wang, J., Zhang, M., Yang, K., Ma, Y., & Kang, Z. (2021). A molecular architectural design that promises potent antimicrobial activity against multidrug-resistant pathogens. NPG Asia Materials, 13(1). https://doi.org/10.1038/s41427-021-00287-y
- Zeb, S., Mushtaq, M., Ahmad, M., Saleem, W., Rabaan, A. A., Naqvi, B. S. Z., Garout, M., Aljeldah, M., Al Shammari, B. R., Al Faraj, N. J., Al-Zaki, N. A., Al Marshood, M. J., Al Saffar, T. Y., Alsultan, K. A., Al-Ahmed, S. H., Alestad, J. H., Naveed, M., & Ahmed, N. (2022). Self-Medication as an Important Risk Factor for Antibiotic Resistance: A Multi-Institutional Survey among Students. Antibiotics, 11(7), 842. https://doi.org/10.3390/antibiotics11070842
- Zhen, X., Stålsby Lundborg, C., Sun, X., Zhu, N., Gu, S., & Dong, H. (2021). Economic burden of antibiotic resistance in China: a national level estimate for inpatients. Antimicrobial Resistance & Infection Control, 10(1). https://doi.org/10.1186/s13756-020-00872-w
Cite this article
-
APA : Ayesha., Shafi, S., & Fatima, N. (2023). Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries. Global Pharmaceutical Sciences Review, VIII(I), 47-59. https://doi.org/10.31703/gpsr.2023(VIII-I).08
-
CHICAGO : Ayesha, , Saba Shafi, and Noor Fatima. 2023. "Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries." Global Pharmaceutical Sciences Review, VIII (I): 47-59 doi: 10.31703/gpsr.2023(VIII-I).08
-
HARVARD : AYESHA., SHAFI, S. & FATIMA, N. 2023. Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries. Global Pharmaceutical Sciences Review, VIII, 47-59.
-
MHRA : Ayesha, , Saba Shafi, and Noor Fatima. 2023. "Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries." Global Pharmaceutical Sciences Review, VIII: 47-59
-
MLA : Ayesha, , Saba Shafi, and Noor Fatima. "Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries." Global Pharmaceutical Sciences Review, VIII.I (2023): 47-59 Print.
-
OXFORD : Ayesha, , Shafi, Saba, and Fatima, Noor (2023), "Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries", Global Pharmaceutical Sciences Review, VIII (I), 47-59
-
TURABIAN : Ayesha, , Saba Shafi, and Noor Fatima. "Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries." Global Pharmaceutical Sciences Review VIII, no. I (2023): 47-59. https://doi.org/10.31703/gpsr.2023(VIII-I).08