ASSESSING INFECTION PATTERNS RESISTANT PATHOGENS AND TARGETED BACTERIAL MECHANISMS A COMPARATIVE ANALYSIS OF ANTIMICROBIAL RESISTANCE IN FIVE COUNTRIES

http://dx.doi.org/10.31703/gpsr.2023(VIII-I).08      10.31703/gpsr.2023(VIII-I).08      Published : Mar 2023
Authored by : Ayesha , Saba Shafi , Noor Fatima , Muhammad Zahid Ali , Shah Zeb , IrumBasheer

08 Pages : 47-59

References

  • Acar, J., & Röstel, B. (2001). Antimicrobial resistance: an overview. Revue scientifique et technique (International Office of Epizootics), 20(3), 797–810. https://doi.org/10.20506/rst.20.3.1309
  • Ahmed, N., Tahir, K., Aslam, S., Cheema, S. M., Rabaan, A. A., Turkistani, S. A., Garout, M., Halwani, M. A., Aljeldah, M., Al Shammari, B. R., Sabour, A. A., Alshiekheid, M. A., Alshamrani, S. A., Azmi, R. A., Al-Absi, G. H., Zeb, S., & Yean, C. Y. (2022). Heavy Metal (Arsenic) Induced Antibiotic Resistance among Extended-Spectrum β-Lactamase (ESBL) Producing Bacteria of Nosocomial Origin. Pharmaceuticals, 15(11), 1426. https://doi.org/10.3390/ph15111426
  • Algammal, A. M., Hetta, H. F., Elkelish, A., Alkhalifah, D. H. H., Hozzein, W. N., Batiha, G. E.-S., El Nahhas, N., & Mabrok, M. A. (2020). Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infection and Drug Resistance, 13, 3255–3265. https://doi.org/10.2147/IDR.S272733
  • Andes, D., & Craig, W. A. (2005). Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clinical Microbiology and Infection, 11, 10–17. https://doi.org/10.1111/j.1469-0691.2005.01265.x
  • Boyanova, L., Markovska, R., & Mitov, I. (2019). Multidrug resistance in anaerobes. Future Microbiology, 14(12), 1055–1064. https://doi.org/10.2217/fmb-2019-0132
  • Chakrapani, G., Zare, M., & Ramakrishna, S. (2022). Current Trends and Definitions in High-performance Antimicrobial Strategies. Current Opinion in Biomedical Engineering, 100407. https://doi.org/10.1016/j.cobme.2022.100407
  • Coque, T. M., Baquero, F., & Cantón, R. (2008). Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance, 13(47). https://doi.org/10.2807/ese.13.47.19044-en
  • Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12(12), 3903–3910. https://doi.org/10.2147/idr.s234610
  • Dai, L., Sahin, O., Grover, M., & Zhang, Q. (2020). New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Translational Research, 223, 76–88 . https://doi.org/10.1016/j.trsl.2020.04.009
  • Dantas Palmeira, J., & Ferreira, H. M. N. (2020). Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production – a threat around the world. Heliyon, 6(1), e03206. https://doi.org/10.1016/j.heliyon.2020.e03206
  • Ding, Y., Wang, Y., Hsia, Y., Sharland, M., & Heath, P. T. (2019). Systematic review of carbapenem-resistant Enterobacteriaceae causing neonatal sepsis in China. Annals of Clinical Microbiology and Antimicrobials, 18(1). https://doi.org/10.1186/s12941-019-0334-9
  • Dunachie, S. J., Day, N. P., & Dolecek, C. J. (2020). The challenges of estimating the human global burden of disease of antimicrobial resistant bacteria. Current Opinion in Microbiology, 57, 95–101. https://doi.org/10.1016/j.mib.2020.09.013
  • Han, R., Shi, Q., Wu, S., Yin, D., Peng, M., Dong, D., Zheng, Y., Guo, Y., Zhang, R., & Hu, F. (2020). Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00314
  • Harun, Md. G. D., Anwar, M. M. U., Sumon, S. A., Hassan, Md. Z., Mohona, T. M., Rahman, A., Abdullah, S. A. H. M., Islam, M. S., Kaydos-Daniels, S. C., & Styczynski, A. R. (2022). Rationale and guidance for strengthening infection prevention and control measures and antimicrobial stewardship programs in Bangladesh: a study protocol. BMC Health Services Research, 22(1), 1–11. https://doi.org/10.1186/s12913-022-08603-0
  • Hofer, U. (2018). The cost of antimicrobial resistance. Nature Reviews Microbiology, 17(1), 3–3. https://doi.org/10.1038/s41579-018-0125-x
  • Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176–187. https://doi.org/10.1016/s0140-6736(15)00473-0
  • Iwu, C. D., & Patrick, S. M. (2021). An insight into the implementation of the global action plan on antimicrobial resistance in the WHO African region: A roadmap for action. International Journal of Antimicrobial Agents, 58(4), 106411. https://doi.org/10.1016/j.ijantimicag.2021.106411
  • Johnson, N. L., Hayes, L. D., Brown, K., Hoo, E., & Ethier, K. A. (2014). CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors--United States, 2005-2013. Morbidity and Mortality Weekly Report (MMWR), 63(4), 3–27.
  • Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). Evidence-Based Complementary and Alternative Medicine, 2021, 1–30. https://doi.org/10.1155/2021/3663315
  • Lacotte, Y., Ã…rdal, C., & Ploy, M.-C. (2020). Infection prevention and control research priorities: what do we need to combat healthcare-associated infections and antimicrobial resistance? Results of a narrative literature review and survey analysis. Antimicrobial Resistance & Infection Control, 9(1). https://doi.org/10.1186/s13756-020-00801-x
  • Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K. M., Wertheim, H. F. L., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., & Kariuki, S. (2013). Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057–1098. https://doi.org/10.1016/s1473-3099(13)70318-9
  • Limmathurotsakul, D., Dunachie, S., Fukuda, K., Feasey, N. A., Okeke, I. N., Holmes, A. H., Moore, C. E., Dolecek, C., van Doorn, H. R., Shetty, N., Lopez, A. D., & Peacock, S. J. (2019). Improving the estimation of the global burden of antimicrobial resistant infections. The Lancet Infectious Diseases, 19(11), e392–e398. https://doi.org/10.1016/s1473-3099(19)30276-2
  • MacKinnon, M. C., Sargeant, J. M., Pearl, D. L., Reid-Smith, R. J., Carson, C. A., Parmley, E. J., & McEwen, S. A. (2020). Evaluation of the health and healthcare system burden due to antimicrobial-resistant Escherichia coli infections in humans: a systematic review and meta-analysis. Antimicrobial Resistance & Infection Control, 9(1), 1–22. https://doi.org/10.1186/s13756-020-00863-x
  • Mehdi, M. M., Abbas, A., Javed, S., Rehman, A., Ahmad, A., Abbas, M., ... & Zeb, S. (2023). The CRISPR-Cas System: How It Works In Bacteria And How It Can Be Used To Encounter Antimicrobial Resistant Pathogens. Journal of Pharmaceutical Negative Results, 14(3), 3681-3694. https://doi.org/10.47750/pnr.2023.14.03.461
  • Melzer, M., & Petersen, I. (2007). Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. Journal of Infection, 55(3), 254–259. https://doi.org/10.1016/j.jinf.2007.04.007
  • Murray, C. J. (2022). Global Burden of Bacterial Antimicrobial Resistance in 2019: a Systematic Analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • Okeke, I. N., Laxminarayan, R., Bhutta, Z. A., Duse, A. G., Jenkins, P., O’Brien, T. F., Pablos-Mendez, A., & Klugman, K. P. (2005). Antimicrobial resistance in developing countries. Part I: recent trends and current status. The Lancet. Infectious Diseases, 5(8), 481–493. https://doi.org/10.1016/S1473-3099(05)70189-4
  • Okunogbe, A., Nugent, R., Spencer, G., Powis, J., Ralston, J., & Wilding, J. (2022). Economic impacts of overweight and obesity: current and future estimates for 161 countries. BMJ Global Health, 7(9), 481–493. https://doi.org/10.1136/bmjgh-2022-009773
  • Omeiri, N. E., Beith, A., Bruinsma, N., Caipo, M. L., Barcos, L. O., Mesplet, M., Barrio, L. D., Minassian, M., Arias, I. C., Vásquez, G. A. N., Corrales, M. L., & Ramon-Pardo, P. (2023). Driving multisectoral antimicrobial resistance action in South America: Lessons learned from implementing an enhanced tripartite AMR country self-assessment tool. 16, 100474–100474. https://doi.org/10.1016/j.onehlt.2022.100474
  • Organization, W. H. (2002). The world health report 2002: reducing risks, promoting healthy life. World Health Organization.
  • Organization, W. H. (2008). World Health Report 2008 (The) Chinese. World Health Organization.
  • Otsuka, Y. (2020). Potent Antibiotics Active against Multidrug-Resistant Gram-Negative Bacteria. Chemical and Pharmaceutical Bulletin, 68(3), 182–190. https://doi.org/10.1248/cpb.c19-00842
  • Paramasivam, R., Gopal, D. R., Dhandapani, R., Subbarayalu, R., Elangovan, M. P., Prabhu, B., Veerappan, V., Nandheeswaran, A., Paramasivam, S., & Saravanan, M. (2023). Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis. Infect Drug Resist, Volume 16(6), 155–178. https://doi.org/10.2147/idr.s384776
  • Senok, A. C., Khanfar, H. S., Bindayna, K. M., & Botta, G. A. (2009). Extended spectrum beta-lactamases (ESBL) in Escherichia coli and Klebsiella pneumoniae: trends in the hospital and community settings. The Journal of Infection in Developing Countries, 3(04), 295–299. https://doi.org/10.3855/jidc.127
  • Serra-Burriel, M., Keys, M., Campillo-Artero, C., Agodi, A., Barchitta, M., Gikas, A., Palos, C., & López-Casasnovas, G. (2020). Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS ONE, 15(1). https://doi.org/10.1371/journal.pone.0227139
  • Shahzeb, K., & Iqra, R. (2019). Threats of bioterrorism in public health, Epidemiological clue, Detection and Safety pre-cautions for outbreaks. Open Journal of Bacteriology, 3(1), 011–015. https://doi.org/10.17352/ojb.000011
  • Stefani, S., Chung, D. R., Lindsay, J. A., Friedrich, A. W., Kearns, A. M., Westh, H., & MacKenzie, F. M. (2012). Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. International Journal of Antimicrobial Agents, 39(4), 273–282. https://doi.org/10.1016/j.ijantimicag.2011.09.030
  • Suay-García, B., & Pérez-Gracia, M. (2019). Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics, 8(3), 122. https://doi.org/10.3390/antibiotics8030122
  • Swami, O. C. (2014). Strategies to Combat Antimicrobial Resistance. JOURNAL of CLINICAL and DIAGNOSTIC RESEARCH, 8(7). https://doi.org/10.7860/jcdr/2014/8925.4529
  • Tacconelli, E., Sifakis, F., Harbarth, S., Schrijver, R., van Mourik, M., Voss, A., Sharland, M., Rajendran, N. B., Rodríguez-Baño, J., Bielicki, J., de Kraker, M.,
  • Gandra, S., Gastmeier, P., Gilchrist, K., Gikas, A., Gladstone, B. P., Goossens, H., Jafri, H., Kahlmeter, G., & Leus, F. (2018). Surveillance for control of antimicrobial resistance. The Lancet Infectious Diseases, 18(3), e99–e106. https://doi.org/10.1016/S1473-3099(17)30485-1
  • Thanh Dong, L., V. Espinoza, H., & Luis Espinoza, J. (2020). Emerging superbugs: The threat of Carbapenem Resistant Enterobacteriaceae. AIMS Microbiology, 7(3), 176–182. https://doi.org/10.3934/microbiol.2020012
  • Tilahun, M., kassa, Y., Gedefie, A., & Belete, M. A. (2021). Emerging Carbapenem-Resistant Enterobacteriaceae Infection, Its Epidemiology and Novel Treatment Options: A Review. Infection and Drug Resistance, Volume 14, 4363–4374 . https://doi.org/10.2147/idr.s337611
  • Villanueva, P., Coffin, S. E., Mekasha, A., McMullan, B., Cotton, M. F., & Bryant, P. A. (2022). Comparison of Antimicrobial Stewardship and Infection Prevention and Control Activities and Resources between Low-/Middle- and High-income Countries. Pediatric Infectious Disease Journal, 41(3S), S3–S9. https://doi.org/10.1097/inf.0000000000003318
  • Wernli, D., Harbarth, S., Levrat, N., & Pittet, D. (2022). A “whole of United Nations approach” to tackle antimicrobial resistance? A mapping of the mandate and activities of international organisations. BMJ Global Health, 7(5), e008181. https://doi.org/10.1136/bmjgh-2021-008181
  • Wozniak, T. M., Barnsbee, L., Lee, X. J., & Pacella, R. E. (2019). Using the best available data to estimate the cost of antimicrobial resistance: a systematic review. Antimicrobial Resistance & Infection Control, 8(1). https://doi.org/10.1186/s13756-019-0472-z
  • Yuan, B., Liu, J., Deng, Z., Wei, L., Li, W., Dou, Y., Chen, Z., Zhang, C., Xia, Y., Wang, J., Zhang, M., Yang, K., Ma, Y., & Kang, Z. (2021). A molecular architectural design that promises potent antimicrobial activity against multidrug-resistant pathogens. NPG Asia Materials, 13(1). https://doi.org/10.1038/s41427-021-00287-y
  • Zeb, S., Mushtaq, M., Ahmad, M., Saleem, W., Rabaan, A. A., Naqvi, B. S. Z., Garout, M., Aljeldah, M., Al Shammari, B. R., Al Faraj, N. J., Al-Zaki, N. A., Al Marshood, M. J., Al Saffar, T. Y., Alsultan, K. A., Al-Ahmed, S. H., Alestad, J. H., Naveed, M., & Ahmed, N. (2022). Self-Medication as an Important Risk Factor for Antibiotic Resistance: A Multi-Institutional Survey among Students. Antibiotics, 11(7), 842. https://doi.org/10.3390/antibiotics11070842
  • Zhen, X., StÃ¥lsby Lundborg, C., Sun, X., Zhu, N., Gu, S., & Dong, H. (2021). Economic burden of antibiotic resistance in China: a national level estimate for inpatients. Antimicrobial Resistance & Infection Control, 10(1). https://doi.org/10.1186/s13756-020-00872-w
  • Acar, J., & Röstel, B. (2001). Antimicrobial resistance: an overview. Revue scientifique et technique (International Office of Epizootics), 20(3), 797–810. https://doi.org/10.20506/rst.20.3.1309
  • Ahmed, N., Tahir, K., Aslam, S., Cheema, S. M., Rabaan, A. A., Turkistani, S. A., Garout, M., Halwani, M. A., Aljeldah, M., Al Shammari, B. R., Sabour, A. A., Alshiekheid, M. A., Alshamrani, S. A., Azmi, R. A., Al-Absi, G. H., Zeb, S., & Yean, C. Y. (2022). Heavy Metal (Arsenic) Induced Antibiotic Resistance among Extended-Spectrum β-Lactamase (ESBL) Producing Bacteria of Nosocomial Origin. Pharmaceuticals, 15(11), 1426. https://doi.org/10.3390/ph15111426
  • Algammal, A. M., Hetta, H. F., Elkelish, A., Alkhalifah, D. H. H., Hozzein, W. N., Batiha, G. E.-S., El Nahhas, N., & Mabrok, M. A. (2020). Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infection and Drug Resistance, 13, 3255–3265. https://doi.org/10.2147/IDR.S272733
  • Andes, D., & Craig, W. A. (2005). Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clinical Microbiology and Infection, 11, 10–17. https://doi.org/10.1111/j.1469-0691.2005.01265.x
  • Boyanova, L., Markovska, R., & Mitov, I. (2019). Multidrug resistance in anaerobes. Future Microbiology, 14(12), 1055–1064. https://doi.org/10.2217/fmb-2019-0132
  • Chakrapani, G., Zare, M., & Ramakrishna, S. (2022). Current Trends and Definitions in High-performance Antimicrobial Strategies. Current Opinion in Biomedical Engineering, 100407. https://doi.org/10.1016/j.cobme.2022.100407
  • Coque, T. M., Baquero, F., & Cantón, R. (2008). Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance, 13(47). https://doi.org/10.2807/ese.13.47.19044-en
  • Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12(12), 3903–3910. https://doi.org/10.2147/idr.s234610
  • Dai, L., Sahin, O., Grover, M., & Zhang, Q. (2020). New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Translational Research, 223, 76–88 . https://doi.org/10.1016/j.trsl.2020.04.009
  • Dantas Palmeira, J., & Ferreira, H. M. N. (2020). Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production – a threat around the world. Heliyon, 6(1), e03206. https://doi.org/10.1016/j.heliyon.2020.e03206
  • Ding, Y., Wang, Y., Hsia, Y., Sharland, M., & Heath, P. T. (2019). Systematic review of carbapenem-resistant Enterobacteriaceae causing neonatal sepsis in China. Annals of Clinical Microbiology and Antimicrobials, 18(1). https://doi.org/10.1186/s12941-019-0334-9
  • Dunachie, S. J., Day, N. P., & Dolecek, C. J. (2020). The challenges of estimating the human global burden of disease of antimicrobial resistant bacteria. Current Opinion in Microbiology, 57, 95–101. https://doi.org/10.1016/j.mib.2020.09.013
  • Han, R., Shi, Q., Wu, S., Yin, D., Peng, M., Dong, D., Zheng, Y., Guo, Y., Zhang, R., & Hu, F. (2020). Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00314
  • Harun, Md. G. D., Anwar, M. M. U., Sumon, S. A., Hassan, Md. Z., Mohona, T. M., Rahman, A., Abdullah, S. A. H. M., Islam, M. S., Kaydos-Daniels, S. C., & Styczynski, A. R. (2022). Rationale and guidance for strengthening infection prevention and control measures and antimicrobial stewardship programs in Bangladesh: a study protocol. BMC Health Services Research, 22(1), 1–11. https://doi.org/10.1186/s12913-022-08603-0
  • Hofer, U. (2018). The cost of antimicrobial resistance. Nature Reviews Microbiology, 17(1), 3–3. https://doi.org/10.1038/s41579-018-0125-x
  • Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176–187. https://doi.org/10.1016/s0140-6736(15)00473-0
  • Iwu, C. D., & Patrick, S. M. (2021). An insight into the implementation of the global action plan on antimicrobial resistance in the WHO African region: A roadmap for action. International Journal of Antimicrobial Agents, 58(4), 106411. https://doi.org/10.1016/j.ijantimicag.2021.106411
  • Johnson, N. L., Hayes, L. D., Brown, K., Hoo, E., & Ethier, K. A. (2014). CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors--United States, 2005-2013. Morbidity and Mortality Weekly Report (MMWR), 63(4), 3–27.
  • Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). Evidence-Based Complementary and Alternative Medicine, 2021, 1–30. https://doi.org/10.1155/2021/3663315
  • Lacotte, Y., Ã…rdal, C., & Ploy, M.-C. (2020). Infection prevention and control research priorities: what do we need to combat healthcare-associated infections and antimicrobial resistance? Results of a narrative literature review and survey analysis. Antimicrobial Resistance & Infection Control, 9(1). https://doi.org/10.1186/s13756-020-00801-x
  • Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K. M., Wertheim, H. F. L., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., & Kariuki, S. (2013). Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057–1098. https://doi.org/10.1016/s1473-3099(13)70318-9
  • Limmathurotsakul, D., Dunachie, S., Fukuda, K., Feasey, N. A., Okeke, I. N., Holmes, A. H., Moore, C. E., Dolecek, C., van Doorn, H. R., Shetty, N., Lopez, A. D., & Peacock, S. J. (2019). Improving the estimation of the global burden of antimicrobial resistant infections. The Lancet Infectious Diseases, 19(11), e392–e398. https://doi.org/10.1016/s1473-3099(19)30276-2
  • MacKinnon, M. C., Sargeant, J. M., Pearl, D. L., Reid-Smith, R. J., Carson, C. A., Parmley, E. J., & McEwen, S. A. (2020). Evaluation of the health and healthcare system burden due to antimicrobial-resistant Escherichia coli infections in humans: a systematic review and meta-analysis. Antimicrobial Resistance & Infection Control, 9(1), 1–22. https://doi.org/10.1186/s13756-020-00863-x
  • Mehdi, M. M., Abbas, A., Javed, S., Rehman, A., Ahmad, A., Abbas, M., ... & Zeb, S. (2023). The CRISPR-Cas System: How It Works In Bacteria And How It Can Be Used To Encounter Antimicrobial Resistant Pathogens. Journal of Pharmaceutical Negative Results, 14(3), 3681-3694. https://doi.org/10.47750/pnr.2023.14.03.461
  • Melzer, M., & Petersen, I. (2007). Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. Journal of Infection, 55(3), 254–259. https://doi.org/10.1016/j.jinf.2007.04.007
  • Murray, C. J. (2022). Global Burden of Bacterial Antimicrobial Resistance in 2019: a Systematic Analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • Okeke, I. N., Laxminarayan, R., Bhutta, Z. A., Duse, A. G., Jenkins, P., O’Brien, T. F., Pablos-Mendez, A., & Klugman, K. P. (2005). Antimicrobial resistance in developing countries. Part I: recent trends and current status. The Lancet. Infectious Diseases, 5(8), 481–493. https://doi.org/10.1016/S1473-3099(05)70189-4
  • Okunogbe, A., Nugent, R., Spencer, G., Powis, J., Ralston, J., & Wilding, J. (2022). Economic impacts of overweight and obesity: current and future estimates for 161 countries. BMJ Global Health, 7(9), 481–493. https://doi.org/10.1136/bmjgh-2022-009773
  • Omeiri, N. E., Beith, A., Bruinsma, N., Caipo, M. L., Barcos, L. O., Mesplet, M., Barrio, L. D., Minassian, M., Arias, I. C., Vásquez, G. A. N., Corrales, M. L., & Ramon-Pardo, P. (2023). Driving multisectoral antimicrobial resistance action in South America: Lessons learned from implementing an enhanced tripartite AMR country self-assessment tool. 16, 100474–100474. https://doi.org/10.1016/j.onehlt.2022.100474
  • Organization, W. H. (2002). The world health report 2002: reducing risks, promoting healthy life. World Health Organization.
  • Organization, W. H. (2008). World Health Report 2008 (The) Chinese. World Health Organization.
  • Otsuka, Y. (2020). Potent Antibiotics Active against Multidrug-Resistant Gram-Negative Bacteria. Chemical and Pharmaceutical Bulletin, 68(3), 182–190. https://doi.org/10.1248/cpb.c19-00842
  • Paramasivam, R., Gopal, D. R., Dhandapani, R., Subbarayalu, R., Elangovan, M. P., Prabhu, B., Veerappan, V., Nandheeswaran, A., Paramasivam, S., & Saravanan, M. (2023). Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis. Infect Drug Resist, Volume 16(6), 155–178. https://doi.org/10.2147/idr.s384776
  • Senok, A. C., Khanfar, H. S., Bindayna, K. M., & Botta, G. A. (2009). Extended spectrum beta-lactamases (ESBL) in Escherichia coli and Klebsiella pneumoniae: trends in the hospital and community settings. The Journal of Infection in Developing Countries, 3(04), 295–299. https://doi.org/10.3855/jidc.127
  • Serra-Burriel, M., Keys, M., Campillo-Artero, C., Agodi, A., Barchitta, M., Gikas, A., Palos, C., & López-Casasnovas, G. (2020). Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS ONE, 15(1). https://doi.org/10.1371/journal.pone.0227139
  • Shahzeb, K., & Iqra, R. (2019). Threats of bioterrorism in public health, Epidemiological clue, Detection and Safety pre-cautions for outbreaks. Open Journal of Bacteriology, 3(1), 011–015. https://doi.org/10.17352/ojb.000011
  • Stefani, S., Chung, D. R., Lindsay, J. A., Friedrich, A. W., Kearns, A. M., Westh, H., & MacKenzie, F. M. (2012). Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. International Journal of Antimicrobial Agents, 39(4), 273–282. https://doi.org/10.1016/j.ijantimicag.2011.09.030
  • Suay-García, B., & Pérez-Gracia, M. (2019). Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics, 8(3), 122. https://doi.org/10.3390/antibiotics8030122
  • Swami, O. C. (2014). Strategies to Combat Antimicrobial Resistance. JOURNAL of CLINICAL and DIAGNOSTIC RESEARCH, 8(7). https://doi.org/10.7860/jcdr/2014/8925.4529
  • Tacconelli, E., Sifakis, F., Harbarth, S., Schrijver, R., van Mourik, M., Voss, A., Sharland, M., Rajendran, N. B., Rodríguez-Baño, J., Bielicki, J., de Kraker, M.,
  • Gandra, S., Gastmeier, P., Gilchrist, K., Gikas, A., Gladstone, B. P., Goossens, H., Jafri, H., Kahlmeter, G., & Leus, F. (2018). Surveillance for control of antimicrobial resistance. The Lancet Infectious Diseases, 18(3), e99–e106. https://doi.org/10.1016/S1473-3099(17)30485-1
  • Thanh Dong, L., V. Espinoza, H., & Luis Espinoza, J. (2020). Emerging superbugs: The threat of Carbapenem Resistant Enterobacteriaceae. AIMS Microbiology, 7(3), 176–182. https://doi.org/10.3934/microbiol.2020012
  • Tilahun, M., kassa, Y., Gedefie, A., & Belete, M. A. (2021). Emerging Carbapenem-Resistant Enterobacteriaceae Infection, Its Epidemiology and Novel Treatment Options: A Review. Infection and Drug Resistance, Volume 14, 4363–4374 . https://doi.org/10.2147/idr.s337611
  • Villanueva, P., Coffin, S. E., Mekasha, A., McMullan, B., Cotton, M. F., & Bryant, P. A. (2022). Comparison of Antimicrobial Stewardship and Infection Prevention and Control Activities and Resources between Low-/Middle- and High-income Countries. Pediatric Infectious Disease Journal, 41(3S), S3–S9. https://doi.org/10.1097/inf.0000000000003318
  • Wernli, D., Harbarth, S., Levrat, N., & Pittet, D. (2022). A “whole of United Nations approach” to tackle antimicrobial resistance? A mapping of the mandate and activities of international organisations. BMJ Global Health, 7(5), e008181. https://doi.org/10.1136/bmjgh-2021-008181
  • Wozniak, T. M., Barnsbee, L., Lee, X. J., & Pacella, R. E. (2019). Using the best available data to estimate the cost of antimicrobial resistance: a systematic review. Antimicrobial Resistance & Infection Control, 8(1). https://doi.org/10.1186/s13756-019-0472-z
  • Yuan, B., Liu, J., Deng, Z., Wei, L., Li, W., Dou, Y., Chen, Z., Zhang, C., Xia, Y., Wang, J., Zhang, M., Yang, K., Ma, Y., & Kang, Z. (2021). A molecular architectural design that promises potent antimicrobial activity against multidrug-resistant pathogens. NPG Asia Materials, 13(1). https://doi.org/10.1038/s41427-021-00287-y
  • Zeb, S., Mushtaq, M., Ahmad, M., Saleem, W., Rabaan, A. A., Naqvi, B. S. Z., Garout, M., Aljeldah, M., Al Shammari, B. R., Al Faraj, N. J., Al-Zaki, N. A., Al Marshood, M. J., Al Saffar, T. Y., Alsultan, K. A., Al-Ahmed, S. H., Alestad, J. H., Naveed, M., & Ahmed, N. (2022). Self-Medication as an Important Risk Factor for Antibiotic Resistance: A Multi-Institutional Survey among Students. Antibiotics, 11(7), 842. https://doi.org/10.3390/antibiotics11070842
  • Zhen, X., StÃ¥lsby Lundborg, C., Sun, X., Zhu, N., Gu, S., & Dong, H. (2021). Economic burden of antibiotic resistance in China: a national level estimate for inpatients. Antimicrobial Resistance & Infection Control, 10(1). https://doi.org/10.1186/s13756-020-00872-w

Cite this article

    APA : Ayesha., Shafi, S., & Fatima, N. (2023). Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries. Global Pharmaceutical Sciences Review, VIII(I), 47-59. https://doi.org/10.31703/gpsr.2023(VIII-I).08
    CHICAGO : Ayesha, , Saba Shafi, and Noor Fatima. 2023. "Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries." Global Pharmaceutical Sciences Review, VIII (I): 47-59 doi: 10.31703/gpsr.2023(VIII-I).08
    HARVARD : AYESHA., SHAFI, S. & FATIMA, N. 2023. Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries. Global Pharmaceutical Sciences Review, VIII, 47-59.
    MHRA : Ayesha, , Saba Shafi, and Noor Fatima. 2023. "Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries." Global Pharmaceutical Sciences Review, VIII: 47-59
    MLA : Ayesha, , Saba Shafi, and Noor Fatima. "Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries." Global Pharmaceutical Sciences Review, VIII.I (2023): 47-59 Print.
    OXFORD : Ayesha, , Shafi, Saba, and Fatima, Noor (2023), "Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries", Global Pharmaceutical Sciences Review, VIII (I), 47-59
    TURABIAN : Ayesha, , Saba Shafi, and Noor Fatima. "Assessing Infection Patterns, Resistant Pathogens and Targeted Bacterial Mechanisms: A Comparative Analysis of Antimicrobial Resistance in Five Countries." Global Pharmaceutical Sciences Review VIII, no. I (2023): 47-59. https://doi.org/10.31703/gpsr.2023(VIII-I).08