An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications
Nanogels have been materialized in recent years as a suitable vehicle for the transport and delivery of drug cargo to patients and have been developed as a part of nanomedicines. Nanotechnology drug delivery system has been emerged to fashion their defined field in this interface. By description, nanogels are 3D sub-micron sized cross-linked polymer systems. Nanogels are made of hydrogel particulate constituents with a size range of nanometers; hence, it possesses both hydrogels and nanoparticles properties. Nanogels have some exceptional properties making them an idea delivery system in various fields including diagnosis, chemotherapeutics, and delivery of genes and targeting specific organs. These ideal properties are stability, better permeation and drug loading ability, responsiveness to environmental stimuli and biologic consistency. This review emphasis chiefly on various types of nanogels, preparation strategies as well as drug loading methods, degradation mechanisms, and drug release mechanisms of drug from nanogels. In this article, we look at these innovative drug delivery systems in more detail with latest pharmaceutical and biological applications of nanogels.
-
Nanotechnology, Nanogels, Macromolecular Network, Cross-Linked
-
(1) Sobia Noreen
Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
(2) Fahad Pervaiz
Associate Professor, Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
(3) Hina Shoukat
Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
(4) Saba Ijaz
Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
- Akiyoshi, K., Kobayashi, S., Shichibe, S., Mix, D., Baudys, M., Kim, S. W., & Sunamoto, J. (1998). Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. Journal of controlled release, 54(3), 313- 320.
- Akiyoshi, K., Sasaki, Y., & Sunamoto, J. (1999). Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B. Bioconjugate chemistry, 10(3), 321-324.
- Alles, N., Soysa, N. S., Hussain, M. A., Tomomatsu, N., Saito, H., Baron, R., . . . Ohya, K. (2009). Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. European Journal of Pharmaceutical Sciences, 37(2), 83-88.
- Alvarez-Lorenzo, C., Moya-Ortega, M. D., Loftsson, T., Concheiro, A., & Torres-Labandeira, J. J. (2011). Cyclodextrin-based hydrogels Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications (pp. 297-321): John Wiley & Sons, Inc. Hoboken, NJ.
- Bae, B.-c., & Na, K. (2010). Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials, 31(24), 6325-6335.
- Booth, C., & Attwood, D. (2000). Effects of block architecture and composition on the association properties of poly (oxyalkylene) copolymers in aqueous solution. Macromolecular Rapid Communications, 21(9), 501-527.
- Chacko, R. T., Ventura, J., Zhuang, J., & Thayumanavan, S. (2012). Polymer nanogels: a versatile nanoscopic drug delivery platform. Advanced drug delivery reviews, 64(9), 836- 851.
- Denkova, A., Mendes, E., & Coppens, M.-O. (2008). Effects of salts and ethanol on the population and morphology of triblock copolymer micelles in solution. The Journal of Physical Chemistry B, 112(3), 793-801.
- Divya, G., Panonnummal, R., Gupta, S., Jayakumar, R., & Sabitha, M. (2016). Acitretin and aloe- emodin loaded chitin nanogel for the treatment of psoriasis. European Journal of Pharmaceutics and Biopharmaceutics, 107, 97-109.
- Dorwal, D. (2012). Nanogels as novel and versatile pharmaceuticals. Int J Pharm Pharm Sci, 4(3), 67-74.
- Ferreira, S. A., Coutinho, P. J., & Gama, F. M. (2011). Synthesis and characterization of self- assembled nanogels made of pullulan. Materials, 4(4), 601-620.
- Garg, T., & Goyal, A. K. (2014). Biomaterial-based scaffolds-current status and future directions. Expert opinion on drug delivery, 11(5), 767-789.
- Garg, T., Singh, S., & Goyal, A. K. (2013). Stimuli- sensitive hydrogels: an excellent carrier for drug and cell delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems, 30(5).
- Glangchai, L. C., Caldorera-Moore, M., Shi, L., & Roy, K. (2008). Nanoimprint lithography based fabrication of shape-specific, enzymatically- triggered smart nanoparticles. Journal of controlled release, 125(3), 263-272.
- Gonçalves, C., Pereira, P., & Gama, M. (2010). Self- assembled hydrogel nanoparticles for drug delivery applications. Materials, 3(2), 1420- 1460.
- Gratton, S. E., Pohlhaus, P. D., Lee, J., Guo, J., Cho, M. J., & DeSimone, J. M. (2007). Nanofabricated particles for engineered drug therapies: A preliminary biodistribution study of PRINT™ nanoparticles. Journal of controlled release, 121(1-2), 10-18.
- Hayashi, H., Iijima, M., Kataoka, K., & Nagasaki, Y. (2004). pH-sensitive nanogel possessing reactive PEG tethered chains on the surface. Macromolecules, 37(14), 5389-5396.
- Kabanov, A. V., & Vinogradov, S. V. (2008). Nanogels as pharmaceutical carriers Multifunctional pharmaceutical nanocarriers (pp. 67-80): Springer.
- Kabanov, A. V., & Vinogradov, S. V. (2009). Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angewandte Chemie International Edition, 48(30), 5418-5429.
- Kazakov, S., & Levon, K. (2006). Liposome-nanogel structures for future pharmaceutical applications. Current pharmaceutical design, 12(36), 4713-4728.
- Kohli, E., Han, H.-Y., Zeman, A. D., & Vinogradov, S. V. (2007). Formulations of biodegradable Nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. Journal of controlled release, 121(1-2), 19-27.
- Kreyling, W. G., Semmler-Behnke, M., & Chaudhry, Q. (2010). A complementary definition of nanomaterial. Nano today, 5(3), 165-168.
- Lee, H., Mok, H., Lee, S., Oh, Y.-K., & Park, T. G. (2007). Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. Journal of controlled release, 119(2), 245-252.
- Ma, Q., Remsen, E. E., Kowalewski, T., & Wooley, K. L. (2001). Two-dimensional, shell-cross-linked nanoparticle arrays. Journal of the American Chemical Society, 123(19), 4627-4628.
- McAllister, K., Sazani, P., Adam, M., Cho, M. J., Rubinstein, M., Samulski, R. J., & DeSimone, J. M. (2002). Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. Journal of the American Chemical Society, 124(51), 15198-15207.
- Mok, H., & Park, T. G. (2006). PEG-assisted DNA solubilization in organic solvents for preparing cytosol specifically degradable PEG/DNA nanogels. Bioconjugate chemistry, 17(6), 1369- 1372.
- Oh, J. K., Drumright, R., Siegwart, D. J., & Matyjaszewski, K. (2008). The development of microgels/nanogels for drug delivery applications. Progress in polymer science, 33(4), 448-477.
- Raemdonck, K., Naeye, B., Høgset, A., Demeester, J., & De Smedt, S. C. (2010). Prolonged gene silencing by combining siRNA nanogels and photochemical internalization. Journal of controlled release, 145(3), 281-288.
- Rolland, J. P., Maynor, B. W., Euliss, L. E., Exner, A. E., Denison, G. M., & DeSimone, J. M. (2005). Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. Journal of the American Chemical Society, 127(28), 10096-10100.
- Sahiner, N., Godbey, W., McPherson, G. L., & John, V. T. (2006). Microgel, nanogel and hydrogel' hydrogel semi-IPN composites for biomedical applications: synthesis and characterization. Colloid and Polymer Science, 284(10), 1121- 1129.
- Santander-Ortega, M., Stauner, T., Loretz, B., Ortega-Vinuesa, J. L., Bastos-González, D., Wenz, G., . . . Lehr, C.-M. (2010). Nanoparticles made from novel starch derivatives for transdermal drug delivery. Journal of controlled release, 141(1), 85-92.
- Sharma, A., Garg, T., Aman, A., Panchal, K., Sharma, R., Kumar, S., & Markandeywar, T. (2016). Nanogel'an advanced drug delivery tool: Current and future. Artificial cells, nanomedicine, and biotechnology, 44(1), 165- 177.
- Sultana, F., Manirujjaman, M., Imran-Ul-Haque, M. A., & Sharmin, S. (2013). An overview of nanogel drug delivery system. J Appl Pharm Sci, 3(8), 95- 105.
- Sun, H., Yu, J., Gong, P., Xu, D., Zhang, C., & Yao, S. (2005). Novel core'shell magnetic nanogels synthesized in an emulsion-free aqueous system under UV irradiation for targeted radiopharmaceutical applications. Journal of magnetism and magnetic materials, 294(3), 273-280.
- Vinogradov, S. V. (2010). Nanogels in the race for drug delivery. Nanomedicine, 5(2), 165-168.
- Vinogradov, S., Batrakova, E., & Kabanov, A. (1999). Poly (ethylene glycol)'polyethyleneimine NanoGel™ particles: novel drug delivery systems for antisense oligonucleotides. Colloids and Surfaces B: Biointerfaces, 16(1-4), 291-304.
- Xu, D.-M., Yao, S.-D., Liu, Y.-B., Sheng, K.-L., Hong, J., Gong, P.-J., & Dong, L. (2007). Size- dependent properties of M-PEIs nanogels for gene delivery in cancer cells. International journal of pharmaceutics, 338(1-2), 291-296.
- Yadav, H., Al Halabi, N., & Alsalloum, G. (2017). Nanogels as novel drug delivery systems-A Review. J. Pharm. Pharm. Res, 1(5).
- Yan, L., & Tao, W. (2010). One-step synthesis of pegylated cationic nanogels of poly (N, N′- dimethylaminoethyl methacrylate) in aqueous solution via self-stabilizing micelles using an amphiphilic macroRAFT agent. Polymer, 51(10), 2161-2167.
- Yu, S., Yao, P., Jiang, M., & Zhang, G. (2006). Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers: Original Research on Biomolecules, 83(2), 148-158.
- Zamurovic, M., Christodoulou, S., Vazaios, A., Iatrou, E., Pitsikalis, M., & Hadjichristidis, N. (2007). Micellization behavior of complex comblike block copolymer architectures. Macromolecules, 40(16), 5835-5849.
Cite this article
-
APA : Noreen, S., Pervaiz, F., & Shoukat, H. (2021). An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications. Global Pharmaceutical Sciences Review, VI(I), 17-26. https://doi.org/10.31703/gpsr.2021(VI-I).03
-
CHICAGO : Noreen, Sobia, Fahad Pervaiz, and Hina Shoukat. 2021. "An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications." Global Pharmaceutical Sciences Review, VI (I): 17-26 doi: 10.31703/gpsr.2021(VI-I).03
-
HARVARD : NOREEN, S., PERVAIZ, F. & SHOUKAT, H. 2021. An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications. Global Pharmaceutical Sciences Review, VI, 17-26.
-
MHRA : Noreen, Sobia, Fahad Pervaiz, and Hina Shoukat. 2021. "An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications." Global Pharmaceutical Sciences Review, VI: 17-26
-
MLA : Noreen, Sobia, Fahad Pervaiz, and Hina Shoukat. "An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications." Global Pharmaceutical Sciences Review, VI.I (2021): 17-26 Print.
-
OXFORD : Noreen, Sobia, Pervaiz, Fahad, and Shoukat, Hina (2021), "An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications", Global Pharmaceutical Sciences Review, VI (I), 17-26
-
TURABIAN : Noreen, Sobia, Fahad Pervaiz, and Hina Shoukat. "An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications." Global Pharmaceutical Sciences Review VI, no. I (2021): 17-26. https://doi.org/10.31703/gpsr.2021(VI-I).03