References
- Akiyoshi, K., Kobayashi, S., Shichibe, S., Mix, D., Baudys, M., Kim, S. W., & Sunamoto, J. (1998). Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. Journal of controlled release, 54(3), 313- 320.
- Akiyoshi, K., Sasaki, Y., & Sunamoto, J. (1999). Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B. Bioconjugate chemistry, 10(3), 321-324.
- Alles, N., Soysa, N. S., Hussain, M. A., Tomomatsu, N., Saito, H., Baron, R., . . . Ohya, K. (2009). Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. European Journal of Pharmaceutical Sciences, 37(2), 83-88.
- Alvarez-Lorenzo, C., Moya-Ortega, M. D., Loftsson, T., Concheiro, A., & Torres-Labandeira, J. J. (2011). Cyclodextrin-based hydrogels Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications (pp. 297-321): John Wiley & Sons, Inc. Hoboken, NJ.
- Bae, B.-c., & Na, K. (2010). Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials, 31(24), 6325-6335.
- Booth, C., & Attwood, D. (2000). Effects of block architecture and composition on the association properties of poly (oxyalkylene) copolymers in aqueous solution. Macromolecular Rapid Communications, 21(9), 501-527.
- Chacko, R. T., Ventura, J., Zhuang, J., & Thayumanavan, S. (2012). Polymer nanogels: a versatile nanoscopic drug delivery platform. Advanced drug delivery reviews, 64(9), 836- 851.
- Denkova, A., Mendes, E., & Coppens, M.-O. (2008). Effects of salts and ethanol on the population and morphology of triblock copolymer micelles in solution. The Journal of Physical Chemistry B, 112(3), 793-801.
- Divya, G., Panonnummal, R., Gupta, S., Jayakumar, R., & Sabitha, M. (2016). Acitretin and aloe- emodin loaded chitin nanogel for the treatment of psoriasis. European Journal of Pharmaceutics and Biopharmaceutics, 107, 97-109.
- Dorwal, D. (2012). Nanogels as novel and versatile pharmaceuticals. Int J Pharm Pharm Sci, 4(3), 67-74.
- Ferreira, S. A., Coutinho, P. J., & Gama, F. M. (2011). Synthesis and characterization of self- assembled nanogels made of pullulan. Materials, 4(4), 601-620.
- Garg, T., & Goyal, A. K. (2014). Biomaterial-based scaffolds-current status and future directions. Expert opinion on drug delivery, 11(5), 767-789.
- Garg, T., Singh, S., & Goyal, A. K. (2013). Stimuli- sensitive hydrogels: an excellent carrier for drug and cell delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems, 30(5).
- Glangchai, L. C., Caldorera-Moore, M., Shi, L., & Roy, K. (2008). Nanoimprint lithography based fabrication of shape-specific, enzymatically- triggered smart nanoparticles. Journal of controlled release, 125(3), 263-272.
- Gonçalves, C., Pereira, P., & Gama, M. (2010). Self- assembled hydrogel nanoparticles for drug delivery applications. Materials, 3(2), 1420- 1460.
- Gratton, S. E., Pohlhaus, P. D., Lee, J., Guo, J., Cho, M. J., & DeSimone, J. M. (2007). Nanofabricated particles for engineered drug therapies: A preliminary biodistribution study of PRINT™ nanoparticles. Journal of controlled release, 121(1-2), 10-18.
- Hayashi, H., Iijima, M., Kataoka, K., & Nagasaki, Y. (2004). pH-sensitive nanogel possessing reactive PEG tethered chains on the surface. Macromolecules, 37(14), 5389-5396.
- Kabanov, A. V., & Vinogradov, S. V. (2008). Nanogels as pharmaceutical carriers Multifunctional pharmaceutical nanocarriers (pp. 67-80): Springer.
- Kabanov, A. V., & Vinogradov, S. V. (2009). Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angewandte Chemie International Edition, 48(30), 5418-5429.
- Kazakov, S., & Levon, K. (2006). Liposome-nanogel structures for future pharmaceutical applications. Current pharmaceutical design, 12(36), 4713-4728.
- Kohli, E., Han, H.-Y., Zeman, A. D., & Vinogradov, S. V. (2007). Formulations of biodegradable Nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. Journal of controlled release, 121(1-2), 19-27.
- Kreyling, W. G., Semmler-Behnke, M., & Chaudhry, Q. (2010). A complementary definition of nanomaterial. Nano today, 5(3), 165-168.
- Lee, H., Mok, H., Lee, S., Oh, Y.-K., & Park, T. G. (2007). Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. Journal of controlled release, 119(2), 245-252.
- Ma, Q., Remsen, E. E., Kowalewski, T., & Wooley, K. L. (2001). Two-dimensional, shell-cross-linked nanoparticle arrays. Journal of the American Chemical Society, 123(19), 4627-4628.
- McAllister, K., Sazani, P., Adam, M., Cho, M. J., Rubinstein, M., Samulski, R. J., & DeSimone, J. M. (2002). Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. Journal of the American Chemical Society, 124(51), 15198-15207.
- Mok, H., & Park, T. G. (2006). PEG-assisted DNA solubilization in organic solvents for preparing cytosol specifically degradable PEG/DNA nanogels. Bioconjugate chemistry, 17(6), 1369- 1372.
- Oh, J. K., Drumright, R., Siegwart, D. J., & Matyjaszewski, K. (2008). The development of microgels/nanogels for drug delivery applications. Progress in polymer science, 33(4), 448-477.
- Raemdonck, K., Naeye, B., Høgset, A., Demeester, J., & De Smedt, S. C. (2010). Prolonged gene silencing by combining siRNA nanogels and photochemical internalization. Journal of controlled release, 145(3), 281-288.
- Rolland, J. P., Maynor, B. W., Euliss, L. E., Exner, A. E., Denison, G. M., & DeSimone, J. M. (2005). Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. Journal of the American Chemical Society, 127(28), 10096-10100.
- Sahiner, N., Godbey, W., McPherson, G. L., & John, V. T. (2006). Microgel, nanogel and hydrogel' hydrogel semi-IPN composites for biomedical applications: synthesis and characterization. Colloid and Polymer Science, 284(10), 1121- 1129.
- Santander-Ortega, M., Stauner, T., Loretz, B., Ortega-Vinuesa, J. L., Bastos-González, D., Wenz, G., . . . Lehr, C.-M. (2010). Nanoparticles made from novel starch derivatives for transdermal drug delivery. Journal of controlled release, 141(1), 85-92.
- Sharma, A., Garg, T., Aman, A., Panchal, K., Sharma, R., Kumar, S., & Markandeywar, T. (2016). Nanogel'an advanced drug delivery tool: Current and future. Artificial cells, nanomedicine, and biotechnology, 44(1), 165- 177.
- Sultana, F., Manirujjaman, M., Imran-Ul-Haque, M. A., & Sharmin, S. (2013). An overview of nanogel drug delivery system. J Appl Pharm Sci, 3(8), 95- 105.
- Sun, H., Yu, J., Gong, P., Xu, D., Zhang, C., & Yao, S. (2005). Novel core'shell magnetic nanogels synthesized in an emulsion-free aqueous system under UV irradiation for targeted radiopharmaceutical applications. Journal of magnetism and magnetic materials, 294(3), 273-280.
- Vinogradov, S. V. (2010). Nanogels in the race for drug delivery. Nanomedicine, 5(2), 165-168.
- Vinogradov, S., Batrakova, E., & Kabanov, A. (1999). Poly (ethylene glycol)'polyethyleneimine NanoGel™ particles: novel drug delivery systems for antisense oligonucleotides. Colloids and Surfaces B: Biointerfaces, 16(1-4), 291-304.
- Xu, D.-M., Yao, S.-D., Liu, Y.-B., Sheng, K.-L., Hong, J., Gong, P.-J., & Dong, L. (2007). Size- dependent properties of M-PEIs nanogels for gene delivery in cancer cells. International journal of pharmaceutics, 338(1-2), 291-296.
- Yadav, H., Al Halabi, N., & Alsalloum, G. (2017). Nanogels as novel drug delivery systems-A Review. J. Pharm. Pharm. Res, 1(5).
- Yan, L., & Tao, W. (2010). One-step synthesis of pegylated cationic nanogels of poly (N, N′- dimethylaminoethyl methacrylate) in aqueous solution via self-stabilizing micelles using an amphiphilic macroRAFT agent. Polymer, 51(10), 2161-2167.
- Yu, S., Yao, P., Jiang, M., & Zhang, G. (2006). Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers: Original Research on Biomolecules, 83(2), 148-158.
- Zamurovic, M., Christodoulou, S., Vazaios, A., Iatrou, E., Pitsikalis, M., & Hadjichristidis, N. (2007). Micellization behavior of complex comblike block copolymer architectures. Macromolecules, 40(16), 5835-5849.
- Akiyoshi, K., Kobayashi, S., Shichibe, S., Mix, D., Baudys, M., Kim, S. W., & Sunamoto, J. (1998). Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. Journal of controlled release, 54(3), 313- 320.
- Akiyoshi, K., Sasaki, Y., & Sunamoto, J. (1999). Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B. Bioconjugate chemistry, 10(3), 321-324.
- Alles, N., Soysa, N. S., Hussain, M. A., Tomomatsu, N., Saito, H., Baron, R., . . . Ohya, K. (2009). Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. European Journal of Pharmaceutical Sciences, 37(2), 83-88.
- Alvarez-Lorenzo, C., Moya-Ortega, M. D., Loftsson, T., Concheiro, A., & Torres-Labandeira, J. J. (2011). Cyclodextrin-based hydrogels Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications (pp. 297-321): John Wiley & Sons, Inc. Hoboken, NJ.
- Bae, B.-c., & Na, K. (2010). Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials, 31(24), 6325-6335.
- Booth, C., & Attwood, D. (2000). Effects of block architecture and composition on the association properties of poly (oxyalkylene) copolymers in aqueous solution. Macromolecular Rapid Communications, 21(9), 501-527.
- Chacko, R. T., Ventura, J., Zhuang, J., & Thayumanavan, S. (2012). Polymer nanogels: a versatile nanoscopic drug delivery platform. Advanced drug delivery reviews, 64(9), 836- 851.
- Denkova, A., Mendes, E., & Coppens, M.-O. (2008). Effects of salts and ethanol on the population and morphology of triblock copolymer micelles in solution. The Journal of Physical Chemistry B, 112(3), 793-801.
- Divya, G., Panonnummal, R., Gupta, S., Jayakumar, R., & Sabitha, M. (2016). Acitretin and aloe- emodin loaded chitin nanogel for the treatment of psoriasis. European Journal of Pharmaceutics and Biopharmaceutics, 107, 97-109.
- Dorwal, D. (2012). Nanogels as novel and versatile pharmaceuticals. Int J Pharm Pharm Sci, 4(3), 67-74.
- Ferreira, S. A., Coutinho, P. J., & Gama, F. M. (2011). Synthesis and characterization of self- assembled nanogels made of pullulan. Materials, 4(4), 601-620.
- Garg, T., & Goyal, A. K. (2014). Biomaterial-based scaffolds-current status and future directions. Expert opinion on drug delivery, 11(5), 767-789.
- Garg, T., Singh, S., & Goyal, A. K. (2013). Stimuli- sensitive hydrogels: an excellent carrier for drug and cell delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems, 30(5).
- Glangchai, L. C., Caldorera-Moore, M., Shi, L., & Roy, K. (2008). Nanoimprint lithography based fabrication of shape-specific, enzymatically- triggered smart nanoparticles. Journal of controlled release, 125(3), 263-272.
- Gonçalves, C., Pereira, P., & Gama, M. (2010). Self- assembled hydrogel nanoparticles for drug delivery applications. Materials, 3(2), 1420- 1460.
- Gratton, S. E., Pohlhaus, P. D., Lee, J., Guo, J., Cho, M. J., & DeSimone, J. M. (2007). Nanofabricated particles for engineered drug therapies: A preliminary biodistribution study of PRINT™ nanoparticles. Journal of controlled release, 121(1-2), 10-18.
- Hayashi, H., Iijima, M., Kataoka, K., & Nagasaki, Y. (2004). pH-sensitive nanogel possessing reactive PEG tethered chains on the surface. Macromolecules, 37(14), 5389-5396.
- Kabanov, A. V., & Vinogradov, S. V. (2008). Nanogels as pharmaceutical carriers Multifunctional pharmaceutical nanocarriers (pp. 67-80): Springer.
- Kabanov, A. V., & Vinogradov, S. V. (2009). Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angewandte Chemie International Edition, 48(30), 5418-5429.
- Kazakov, S., & Levon, K. (2006). Liposome-nanogel structures for future pharmaceutical applications. Current pharmaceutical design, 12(36), 4713-4728.
- Kohli, E., Han, H.-Y., Zeman, A. D., & Vinogradov, S. V. (2007). Formulations of biodegradable Nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. Journal of controlled release, 121(1-2), 19-27.
- Kreyling, W. G., Semmler-Behnke, M., & Chaudhry, Q. (2010). A complementary definition of nanomaterial. Nano today, 5(3), 165-168.
- Lee, H., Mok, H., Lee, S., Oh, Y.-K., & Park, T. G. (2007). Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. Journal of controlled release, 119(2), 245-252.
- Ma, Q., Remsen, E. E., Kowalewski, T., & Wooley, K. L. (2001). Two-dimensional, shell-cross-linked nanoparticle arrays. Journal of the American Chemical Society, 123(19), 4627-4628.
- McAllister, K., Sazani, P., Adam, M., Cho, M. J., Rubinstein, M., Samulski, R. J., & DeSimone, J. M. (2002). Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. Journal of the American Chemical Society, 124(51), 15198-15207.
- Mok, H., & Park, T. G. (2006). PEG-assisted DNA solubilization in organic solvents for preparing cytosol specifically degradable PEG/DNA nanogels. Bioconjugate chemistry, 17(6), 1369- 1372.
- Oh, J. K., Drumright, R., Siegwart, D. J., & Matyjaszewski, K. (2008). The development of microgels/nanogels for drug delivery applications. Progress in polymer science, 33(4), 448-477.
- Raemdonck, K., Naeye, B., Høgset, A., Demeester, J., & De Smedt, S. C. (2010). Prolonged gene silencing by combining siRNA nanogels and photochemical internalization. Journal of controlled release, 145(3), 281-288.
- Rolland, J. P., Maynor, B. W., Euliss, L. E., Exner, A. E., Denison, G. M., & DeSimone, J. M. (2005). Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. Journal of the American Chemical Society, 127(28), 10096-10100.
- Sahiner, N., Godbey, W., McPherson, G. L., & John, V. T. (2006). Microgel, nanogel and hydrogel' hydrogel semi-IPN composites for biomedical applications: synthesis and characterization. Colloid and Polymer Science, 284(10), 1121- 1129.
- Santander-Ortega, M., Stauner, T., Loretz, B., Ortega-Vinuesa, J. L., Bastos-González, D., Wenz, G., . . . Lehr, C.-M. (2010). Nanoparticles made from novel starch derivatives for transdermal drug delivery. Journal of controlled release, 141(1), 85-92.
- Sharma, A., Garg, T., Aman, A., Panchal, K., Sharma, R., Kumar, S., & Markandeywar, T. (2016). Nanogel'an advanced drug delivery tool: Current and future. Artificial cells, nanomedicine, and biotechnology, 44(1), 165- 177.
- Sultana, F., Manirujjaman, M., Imran-Ul-Haque, M. A., & Sharmin, S. (2013). An overview of nanogel drug delivery system. J Appl Pharm Sci, 3(8), 95- 105.
- Sun, H., Yu, J., Gong, P., Xu, D., Zhang, C., & Yao, S. (2005). Novel core'shell magnetic nanogels synthesized in an emulsion-free aqueous system under UV irradiation for targeted radiopharmaceutical applications. Journal of magnetism and magnetic materials, 294(3), 273-280.
- Vinogradov, S. V. (2010). Nanogels in the race for drug delivery. Nanomedicine, 5(2), 165-168.
- Vinogradov, S., Batrakova, E., & Kabanov, A. (1999). Poly (ethylene glycol)'polyethyleneimine NanoGel™ particles: novel drug delivery systems for antisense oligonucleotides. Colloids and Surfaces B: Biointerfaces, 16(1-4), 291-304.
- Xu, D.-M., Yao, S.-D., Liu, Y.-B., Sheng, K.-L., Hong, J., Gong, P.-J., & Dong, L. (2007). Size- dependent properties of M-PEIs nanogels for gene delivery in cancer cells. International journal of pharmaceutics, 338(1-2), 291-296.
- Yadav, H., Al Halabi, N., & Alsalloum, G. (2017). Nanogels as novel drug delivery systems-A Review. J. Pharm. Pharm. Res, 1(5).
- Yan, L., & Tao, W. (2010). One-step synthesis of pegylated cationic nanogels of poly (N, N′- dimethylaminoethyl methacrylate) in aqueous solution via self-stabilizing micelles using an amphiphilic macroRAFT agent. Polymer, 51(10), 2161-2167.
- Yu, S., Yao, P., Jiang, M., & Zhang, G. (2006). Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers: Original Research on Biomolecules, 83(2), 148-158.
- Zamurovic, M., Christodoulou, S., Vazaios, A., Iatrou, E., Pitsikalis, M., & Hadjichristidis, N. (2007). Micellization behavior of complex comblike block copolymer architectures. Macromolecules, 40(16), 5835-5849.
Cite this article
-
APA : Noreen, S., Pervaiz, F., & Shoukat, H. (2021). An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications. Global Pharmaceutical Sciences Review, VI(I), 17-26. https://doi.org/10.31703/gpsr.2021(VI-I).03
-
CHICAGO : Noreen, Sobia, Fahad Pervaiz, and Hina Shoukat. 2021. "An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications." Global Pharmaceutical Sciences Review, VI (I): 17-26 doi: 10.31703/gpsr.2021(VI-I).03
-
HARVARD : NOREEN, S., PERVAIZ, F. & SHOUKAT, H. 2021. An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications. Global Pharmaceutical Sciences Review, VI, 17-26.
-
MHRA : Noreen, Sobia, Fahad Pervaiz, and Hina Shoukat. 2021. "An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications." Global Pharmaceutical Sciences Review, VI: 17-26
-
MLA : Noreen, Sobia, Fahad Pervaiz, and Hina Shoukat. "An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications." Global Pharmaceutical Sciences Review, VI.I (2021): 17-26 Print.
-
OXFORD : Noreen, Sobia, Pervaiz, Fahad, and Shoukat, Hina (2021), "An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications", Global Pharmaceutical Sciences Review, VI (I), 17-26
-
TURABIAN : Noreen, Sobia, Fahad Pervaiz, and Hina Shoukat. "An Updated Review of Novel Nanogels as Versatile Nano-Platforms for Biomedical and Pharmaceutical Applications." Global Pharmaceutical Sciences Review VI, no. I (2021): 17-26. https://doi.org/10.31703/gpsr.2021(VI-I).03