Is Essential Oils Considers New Paradigm's Shift as Treatment Goal for Covid-19: Review Based Approach Study
The Essential oils considered as promising veridical activity against various pathogenic viruses. Byanalyses we found out that essential oil constituent having any counter effect or interact with specific proteins present in COVID-19. The method to determine give in literature view by using databases resources such as, Semantic scholar, Google scholar, Science direct and PubMed. Result: In literature survey it is found out thataromatic plants containing essential oils having veridical activity against various viruses which include Herpes virus-2. Enterovirus 71, HIV, Adeno virus. From literature reviews its reveal that aromatic plant and essential oil having high antiviral activity for many viruses. It is found that some essential oils having some isolated compound which have inhibitory effect on COVID 19. According to analysis done by, its found out that 171 constituent of essential oil influencing SARS-COV-2 proteins and found potential inhibitor of viruses.
-
Essential Oil Constituents, SARS-CoV-2, Aromatic Plants, Essential Oil, Veridical Activity
-
(1) Sidra Ashraf
Ph.D Scholar, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Is
(2) Maria Hassan Kiani
Ph.D Candidate, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
(3) Hadiqa Nazish
Ph.D Scholar, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
(4) Gul Shahnaz
Assistant Professor, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Adeyinka Aboaba, S., Igumoye, H., & Flamini, G. (2016). Chemical composition of the leaves and stem bark of Sterculia tragacantha, Anthocleista vogelii and leaves of Bryophyllum pinnatum. Journal of Essential Oil Research, 29(1), 85–92. https://doi.org/10.1080/10412905.2016.1178182
- Alamgeer, Younis, W., Asif, H., Sharif, A., Riaz, H., Bukhari, I. A., & Assiri, A. M. (2018). Traditional medicinal plants used for respiratory disorders in Pakistan: a review of the ethno-medicinal and pharmacological evidence. Chinese Medicine, 13(1). https://doi.org/10.1186/s13020-018-0204-y
- Allahverdiyev, A., Duran, N., Ozguven, M., & Koltas, S. (2004). Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine, 11(7–8), 657–661. https://doi.org/10.1016/j.phymed.2003.07.014
- Anderson, N. R., & West, M. A. (1998). Measuring climate for work group innovation: development and validation of the team climate inventory. Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 19(3), 235-258
- Boldog, P., Tekeli, T., Vizi, Z., Dénes, A., Bartha, F. A., & Röst, G. (2020). Risk Assessment of Novel Coronavirus COVID-19 Outbreaks Outside China. Journal of Clinical Medicine, 9(2), 571. https://doi.org/10.3390/jcm9020571
- Bouazzi, S., Jmii, H., el Mokni, R., Faidi, K., Falconieri, D., Piras, A., Jaïdane, H., Porcedda, S., & Hammami, S. (2018). Cytotoxic and antiviral activities of the essential oils from Tunisian Fern, Osmunda regalis. South African Journal of Botany, 118, 52–57. https://doi.org/10.1016/j.sajb.2018.06.015
- Bower, P., Campbell, S., Bojke, C., & Sibbald, B. (2003). Team structure, team climate and the quality of care in primary care: an observational study. BMJ Quality & Safety, 12(4), 273-279
- Brand, Y. M., Roa-Linares, V. C., Betancur-Galvis, L. A., Durán-GarcÃa, D. C., & Stashenko, E. (2015). Antiviral activity of Colombian Labiatae and Verbenaceae family essential oils andmonoterpenes on Human Herpes viruses. Journal of Essential Oil Research, 28(2), 130– 137. https://doi.org/10.1080/10412905.2015.1093556
- Chang, C. K., Sue, S. C., Yu, T. H., Hsieh, C. M., Tsai, C. K., Chiang, Y. C., Lee, S. J., Hsiao, H. H., Wu, W. J., Chang, W. L., Lin, C. H., & Huang, T. H. (2005). Modular organization of SARS coronavirus nucleocapsid protein. Journal of Biomedical Science, 13(1), 59–72. https://doi.org/10.1007/s11373-005-9035-9
- Davies, H. A., & Macnaughton, M. R. (1979). Comparison of the morphology of three coronaviruses. Archives of Virology, 59(1–2), 25–33. https://doi.org/10.1007/bf01317891
- de Clercq, E. (2004). Antiviral drugs in current clinical use. Journal of Clinical Virology, 30(2), 115–133. https://doi.org/10.1016/j.jcv.2004.02.009
- Duschatzky, C. B., Possetto, M. L., Talarico, L. B., GarcÃa, C. C., Michis, F., Almeida, N. V., de Lampasona, M. P., Schuff, C., & Damonte, E. B. (2005). Evaluation of Chemical and Antiviral Properties of Essential Oils from South American Plants. Antiviral Chemistry and Chemotherapy, 16(4), 247–251. https://doi.org/10.1177/095632020501600404
- Duschatzky, C. B., Possetto, M. L., Talarico, L. B., GarcÃa, C. C., Michis, F., Almeida, N. V., de Lampasona, M. P., Schuff, C., & Damonte, E. B. (2005b). Evaluation of Chemical and Antiviral Properties of Essential Oils from South American Plants. Antiviral Chemistry and Chemotherapy, 16(4), 247–251. https://doi.org/10.1177/095632020501600404
- Farag, R. S., Shalaby, A. S., El-Baroty, G. A., Ibrahim, N. A., Ali, M. A., & Hassan, E. M. (2004). Chemical and biological evaluation of the essential oils of differentMelaleuca species. Phytotherapy Research, 18(1), 30–35. https://doi.org/10.1002/ptr.1348
- GÓMEZ-CANSINO, R., GUZMÃN-GUTIÉRREZ, S. L., CAMPOS-LARA, M. G., ESPITIA-PINZÓN, C. I., & REYES-CHILPA, R. (2017). Natural Compounds from Mexican Medicinal Plants asPotential Drug Leads for Anti-Tuberculosis Drugs. Anais Da Academia Brasileira de Ciências, 89(1), 31–43. https://doi.org/10.1590/0001-3765201720160298
- Harvey, A. L. (2007). Natural products as a screening resource. Current Opinion in Chemical Biology, 11(5), 480–484. https://doi.org/10.1016/j.cbpa.2007.08.012
- Harvey, A. L. (2007b). Natural products as a screening resource. Current Opinion in Chemical Biology, 11(5), 480–484. https://doi.org/10.1016/j.cbpa.2007.08.012
- Hayashi, K., Imanishi, N., Kashiwayama, Y., Kawano, A., Terasawa, K., Shimada, Y., & Ochiai, H. (2007). Inhibitory effect of cinnamaldehyde, derived from Cinnamomi cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo. Antiviral Research, 74(1), 1–8. https://doi.org/10.1016/j.antiviral.2007.01.003
- Iampol'skaia, I., Uzhvi, V. G., & Dunaevskaia, T. N. (1979). Ob asimmetrii v raspredelenii pokazateleÄ fizicheskogo razvitiia deteÄ i podrostkov (Asymmetry in the distribution of the indices of the physical development of children and adolescents). Gigiena i sanitariia, (1), 20–25.
- Jung, S. M., Kinoshita, R., Thompson, R. N., Linton, N. M., Yang, Y., Akhmetzhanov, A. R., & Nishiura, H. (2020). Epidemiological Identification of A Novel Pathogen in Real Time: Analysis of the Atypical Pneumonia Outbreak in Wuhan, China, 2019–2020. Journal of Clinical Medicine, 9(3), 637. https://doi.org/10.3390/jcm9030637
- Kasende, O. E., Matondo, A., Muya, J. T., & Scheiner, S. (2016). Interactions between temozolomide and guanine and its S and Se-substituted analogues. International Journal of Quantum Chemistry, 117(3), 157–169. https://doi.org/10.1002/qua.25294
- Kizil S, Hasimi N, Tolan V, Kilinç E, Karatas H. (2010). Chemical composition, antimicrobial and antioxidant activities of Hyssop (Hyssopus officinalis L.) Essential oil. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 99-103. https://scholar.google.com/citations?user=yJJaIioAAAAJ&hl=fa
- Koch C. (2020). Antivirale effekte ausgewahlter atherischer ole auf behullte Viren unter besonderer berucksichtigung des Herpes simplex Virus Type 1 and 2. 2005. Dissertation, Universitat Heidelberg; 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080060/
- Lien C. C., Lean, T. N., Pei, W. C. H., Win, C., & Chun, C. L. (2005). Antiviral activities of extracts and selected pure constituents of. Ocimum basilicum. Clinical and Experimental Pharmacology and Physiology 32, 811-816.
- Lin, L. T., Hsu, W. H., & Lin, C. C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine 4(1), 24-35. https://pubmed.ncbi.nlm.nih.gov/24872930/
- Loizzo, M., Saab, A., Tundis, R., Statti, G., Menichini, F., Lampronti, I., Gambari, R., Cinatl, J., & Doerr, H. (2008). Phytochemical Analysis andin vitro Antiviral Activities of the Essential Oils of Seven Lebanon Species. Chemistry & Biodiversity, 5(3), 461–470. https://doi.org/10.1002/cbdv.200890045
- Mann, T. S., Babu, G. D. K., Guleria, S., & Singh, B. (2011). Comparison of Eucalyptus cinerea essential oils produced by hydrodistillation and supercritical carbon dioxide extraction. Natural Product Communications, 6(1), 1934578X1100600. https://doi.org/10.1177/1934578x1100600125
- Marshall E. (2011). Health and wealth from medicinal aromatic plants. Rural Infrastructure and Agro- Industries Division, Food and Agriculture Organization of the United Nations, Diversification Booklet Number. 73:17
- Masters, P. S. (2006). The Molecular Biology of Coronaviruses. Advances in Virus Research, 193–292. https://doi.org/10.1016/s0065-3527(06)66005-3
- Mbadiko CM, Inkoto CL, Gbolo BZ, Lengbiye EM, Kilembe JT, Matondo A, et al. (2020). A mini review on the phytochemistry, toxicology and antiviral activity of some medically interesting Zingiberaceae species. Journal of Complementary and Alternative Medical Research. 2020;9(4): 44-56. https://assets.researchsquare.com/files/rs-63923/v2/8375e724-64c3-4527-aa20-76e6b015ee09.pdf
- McCloskey, B., & Heymann, D. L. (2020). SARS to novel coronavirus – old lessons and new lessons. Epidemiology and Infection, 148. https://doi.org/10.1017/s0950268820000254
- Minami, M., Kita, M., Nakaya, T., Yamamoto, T., Kuriyama, H., & Imanishi, J. (2003). The Inhibitory Effect of Essential Oils on Herpes Simplex Virus Type-1 Replication In Vitro. Microbiology and Immunology, 47(9), 681– 684. https://doi.org/10.1111/j.1348-0421.2003.tb03431.x
- Mpiana, P. T., Ngbolua, K. T. N., Tshibangu, D. S. T., Kilembe, J. T., Gbolo, B. Z., Mwanangombo, D. T., Inkoto, C. L., Lengbiye, E. M., Mbadiko, C. M., Matondo, A., Bongo, G. N., & Tshilanda, D. D. (2020b). Aloe vera (L.) Burm. F. as a Potential Anti-COVID-19 Plant: A Mini-review of Its Antiviral Activity. European Journal of Medicinal Plants, 86–93. https://doi.org/10.9734/ejmp/2020/v31i830261
- Mpiana, P. T., Ngbolua, K. T. N., Tshibangu, D. S., Kilembe, J. T., Gbolo, B. Z., Mwanangombo, D. T., Inkoto, C. L., Lengbiye, E. M., Mbadiko, C. M., Matondo, A., Bongo, G. N., & Tshilanda, D. D. (2020). Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chemical Physics Letters, 754, 137751. https://doi.org/10.1016/j.cplett.2020.137751
- Ogunwande, I. A. (2019, March 6). Essential oil composition of Terminalia ivorensis A. Chev. flowers from Northern Nigeria. Trends Phytochemistry Research. http://tpr.iau-shahrood.ac.ir/article_664802.html
- Öğütçü H, Sökmen A, Sökmen M, Polissiou M, Serkedjieva J, Daferera D, et al. (2008). Bioactivities of the Various Extracts and Essential Oils of Salvia limbata CA Mey. and Salvia sclarea L. Turkish Journal of Biology, 32(3), 181-192. https://www.researchgate.net/publication/267031136_Bioactivities_of_the_various_extracts_and_essential_oils_of_Salvia_limbata_CAMey_and_Salvia_sclarea_L
- Oladimeji A. O. (2018). Variation in pre-extraction processes influences the differences in chemical constituent, quantity and biochemical activities of volatile oils from Crinum jagus (Th.) D.: Gas chromatography- mass spectrometry analysis . Journal of Taibah University for Sciences, 12(6), 748- 753. https://www.researchgate.net/publication/328674578_Variation_in_pre- extraction_processes_influences_the_differences_in_chemical_constituent_quantity_and_biochemical_activities_of_volatile_oils_from_Crinum_jagus_Th_D_Gas_Chromatography-Mass_Spectrometr
- Pang, J., Wang, M. X., Ang, I. Y. H., Tan, S. H. X., Lewis, R. F., et al., (2020). Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. Journal of Clinical Medicine, 9(3), 623. https://doi.org/10.3390/jcm9030623
- Ramling, P, Meera, M, & Priyanka, P. (2012). Phytochemical and pharmacological review on Laurus nobilis. International Journal of Pharmaceutical and Chemical Sciences, 1(2), 595-602. https://www.academia.edu/26348805/INTERNATIONAL_JOURNAL_OF_PHARMACEUTICAL_AND_CHEMICAL_SCIENCES_Phytochemical_and_Pharmacological_Review_on_Laurus_Nobilis?auto=download
- Reichling, J., Koch, C., Stahl-Biskup, E., Sojka, C., & Schnitzler, P. (2005). Virucidal activity of a beta-triketone- rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture. Planta Medica, 71(12), 1123–1127. https://doi.org/10.1055/s-2005-873175
- Ross, S., el Sayed, K., el Sohly, M., Hamann, M., Abdel-Halim, O., Ahmed, A., & Ahmed, M. (1997). Phytochemical Analysis of Geigeria alata and Francoeuria crispa Essential Oils. Planta Medica, 63(05), 479–482. https://doi.org/10.1055/s-2006-957743
- Saddi, M., Sanna, A., Cottiglia, F., Chisu, L., Casu, L., Bonsignore L, et al. (2007). Antiherpes activity of Artemisia arborescens essential oil and inhibition of lateral diffusion in vero cells. Annals of Clinical Microbiology andAntimicrobials. 6, 1–10. https://ann-clinmicrob.biomedcentral.com/articles/10.1186/1476-0711-6-10
- Salem, M. L., & Hossain, M. S. (2000). Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. International Journal of Immunopharmacology, 22(9), 729–740. https://doi.org/10.1016/s0192-0561(00)00036-9
- Schnitzler, P., Koch, C., & Reichling, J. (2007). Susceptibility of Drug-Resistant Clinical Herpes Simplex Virus Type 1 Strains to Essential Oils of Ginger, Thyme, Hyssop, and Sandalwood. Antimicrobial Agents and Chemotherapy, 51(5), 1859–1862. https://doi.org/10.1128/aac.00426-06
- Shanmugaraj, B., Malla, A., & Phoolcharoen, W. (2020). Emergence of Novel Coronavirus 2019- nCoV: Need for Rapid Vaccine and Biologics Development. Pathogens, 9(2), 148. https://doi.org/10.3390/pathogens9020148
- Siddiqui, Y. M., Ettayebi, M., Haddad, A. M., & Al- Ahdal, M. N. (1996). Effect of Essential Oils on the Enveloped Viruses: Antiviral Activity of Oregano and Clove Oils on Herpes Simplex Virus Type 1 and Newcastle Disease Virus. Med Sci Res 24, 185-186. https://www.scienceopen.com/document?vid=4caa05ec-69f2-4f59-8688-cdf2c2182cc9
- Sivropoulou, A., Nikolaou, C., Papanikolaou, E., Kokkini, S., Lanaras, T., & Arsenakis, M. (1997). Antimicrobial, Cytotoxic, and Antiviral Activities of Salvia fructicosa Essential Oil. Journal of Agricultural and Food Chemistry, 45(8), 3197– 3201. https://doi.org/10.1021/jf970031m
- kachenko, K. G. (2007). Antiviral Activity of the Essential Oils of some Heracleum L. Species. Journal of Herbs, Spices & Medicinal Plants, 12(3), 1–12. https://doi.org/10.1300/j044v12n03_01
- Wang K. C., & Chang J. (2009). 4- Methoxycinnamaldehyde Inhibited Human Respiratory Syncytial Virus in a Human Larynx Carcinoma Cell Line. Phytomedicine 16, 882- 886. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822011000400049
- Weizmann, C. & Rosenfeld, B. (1937). The activation of the butanol-acetone fermentation ofcarbohydrates by Clostridium acetobutylicum (Weizmann) Biochem. J. 31 619–39
- Yue, X. G., Shao, X. F., Li, R., Crabbe, M., Mi, L., Hu, S., Baker, J., & Liang, G. (2020). Risk Management Analysis for Novel Coronavirus in Wuhan, China. Journal of Risk and Financial Management, 13(2), 22. https://doi.org/10.3390/jrfm13020022
Cite this article
-
APA : Ashraf, S., Kiani, M. H., & Nazish, H. (2021). Is Essential Oils Considers New Paradigm's Shift as Treatment Goal for Covid-19: Review Based Approach Study. Global Pharmaceutical Sciences Review, VI(I), 27-35. https://doi.org/10.31703/gpsr.2021(VI-I).04
-
CHICAGO : Ashraf, Sidra, Maria Hassan Kiani, and Hadiqa Nazish. 2021. "Is Essential Oils Considers New Paradigm's Shift as Treatment Goal for Covid-19: Review Based Approach Study." Global Pharmaceutical Sciences Review, VI (I): 27-35 doi: 10.31703/gpsr.2021(VI-I).04
-
HARVARD : ASHRAF, S., KIANI, M. H. & NAZISH, H. 2021. Is Essential Oils Considers New Paradigm's Shift as Treatment Goal for Covid-19: Review Based Approach Study. Global Pharmaceutical Sciences Review, VI, 27-35.
-
MHRA : Ashraf, Sidra, Maria Hassan Kiani, and Hadiqa Nazish. 2021. "Is Essential Oils Considers New Paradigm's Shift as Treatment Goal for Covid-19: Review Based Approach Study." Global Pharmaceutical Sciences Review, VI: 27-35
-
MLA : Ashraf, Sidra, Maria Hassan Kiani, and Hadiqa Nazish. "Is Essential Oils Considers New Paradigm's Shift as Treatment Goal for Covid-19: Review Based Approach Study." Global Pharmaceutical Sciences Review, VI.I (2021): 27-35 Print.
-
OXFORD : Ashraf, Sidra, Kiani, Maria Hassan, and Nazish, Hadiqa (2021), "Is Essential Oils Considers New Paradigm's Shift as Treatment Goal for Covid-19: Review Based Approach Study", Global Pharmaceutical Sciences Review, VI (I), 27-35
-
TURABIAN : Ashraf, Sidra, Maria Hassan Kiani, and Hadiqa Nazish. "Is Essential Oils Considers New Paradigm's Shift as Treatment Goal for Covid-19: Review Based Approach Study." Global Pharmaceutical Sciences Review VI, no. I (2021): 27-35. https://doi.org/10.31703/gpsr.2021(VI-I).04