ARTICLE

DEVELOPMENT AND CHARACTERIZATION OF BILAYER SUSTAINED RELEASE TABLETS OF TRAMADOL HCL AND ACETAMINOPHEN

02 Pages : 6-16

http://dx.doi.org/10.31703/gpsr.2016(I-I).02      10.31703/gpsr.2016(I-I).02      Published : Dec 2016

Development and Characterization of Bilayer Sustained Release Tablets of Tramadol HCl and Acetaminophen

    The aim of the present study was to develop bilayer sustained release tablets of to improve patient compliance of two drugs, tramadol and paracetamol. Immediate release layer contained both drugs tramadol hydrochloride and acetaminophen while the sustained release layer was designed only for the tramadol hydrochloride. Hydrophobic polymers Eudragit L-100, Eudragit S-100 and hydrophilic polymer hydroxy propyl methyl cellulose (HPMC K15), and wet granulation technique to produce bilayer matrix tablets. FTIR studies revealed no incompatibility among the ingredients. Out of 16 trials developed and characterized for weight variation, thickness, diameter, hardness, and friability, F16 showed promising result with immediate layer releasing drug 29% in 2 hours followed by sustained release 77% drug over 12 hours and followed zero order release. Therefore, bilayer sustained release tablets of tramadol with simultaneous loading of Paracetamol can be developed using Eudragit S-100 and hydroxyl propyl methylcellulose (HPMC K15) at equimolar content levels.

    Tramadol, Acetaminophen, Eudragit, HPMC K15, Bilayer, Sustained release
    (1) Rashid Javed
    M.Phil. Scholar, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore Campus, Punjab, Pakistan.
    (2) Sana Ijaz
    Assistant Professor, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore Campus, Punjab, Pakistan.
    (3) Kainat Waqar
    Assistant Professor, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore Campus, Punjab, Pakistan.
    (4) Muhammad Imran Khan
    Assistant Professor, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore Campus, Punjab, Pakistan.
  • Abdullah, E., & Geldart, D. (1999). The use of bulk density measurements as flowability indicators. Powder technology, 102(2), 151-165
  • Albhar, K. G., Wagh, V. S., & Chavan, B. (2012). Effect of HPMC K4M, HPMC K15M, sodium alginate and carbopol 934 in the formulation of carbonyl iron capsule. J Der Pharm Lett, 4(1), 94-367.
  • Asane, G., Nirmal, S., Rasal, K., Naik, A., Mahadik, M., & Rao, Y. M. (2008). Polymers for mucoadhesive drug delivery system: a current status. Drug Development and Industrial Pharmacy, 34(11), 1246-1266.
  • Atram, S., Udavant, Y., Salunke, R., Neb, G., Shahi, S., Gulecha, B., & Padalkar, A. (2009). Formulation of bilayer tablet containing metoprolol succinate and amlodipine besylate as a model drug for antihypertensive therapy. Journal of Pharmacy Research, 2(8), 1335- 1347.
  • Botting, R. M. (2000). Mechanism of action of acetaminophen: is there a cyclooxygenase 3? Clinical Infectious Diseases, 31(Supplement_5), S202-S210.
  • Brayfield, A. (2014). Tramadol hydrochloride. Martindale: The Complete Drug Reference. Pharmaceutical Press., 5.
  • Cossmann, M., & Wilsmann, K. (1987). Effect and side effects of tramadol: an open phase IV study with 7198 patients. Therapiewoche, 37, 3475- 3485.
  • Dudhat, K. R. (2013). Design and Development of Bilayer Tablets of Ondansetron Hydrochloride and Pantoprazole Sodium for Targeted Drug Delivery.
  • Dunnett, C., & Crisafio, R. (1955). The operating characteristics of some official weight variation tests for tablets. Journal of Pharmacy and Pharmacology, 7(1), 314-327.
  • Frizon, F., de Oliveira Eloy, J., Donaduzzi, C. M., Mitsui, M. L., & Marchetti, J. M. (2013). Dissolution rate enhancement of loratadine in polyvinylpyrrolidone K-30 solid dispersions by solvent methods. Powder technology, 235, 532-539.
  • Gopinath, C., Bindu, V. H., & Nischala, M. (2013). An overview on bilayered tablet technology. Journal of global trends in pharmaceutical sciences, 4(2), 1077-1085.
  • Henry, B. R. (1961). Friable tablet and process for manufacturing same. In: Google Patents.
  • Hlinak, A. J., Kuriyan, K., Morris, K. R., Reklaitis, G. V., & Basu, P. K. (2006). Understanding critical material properties for solid dosage form design. Journal of Pharmaceutical Innovation, 1(1), 12-17.
  • Jayaprakash, S., Halith, S. M., Pillai, K. K., Balasubramaniyam, P., Firthouse, P. M., & Boopathi, M. (2011). Formulation and evaluation of bilayer tablets of amlodipine besilate and metprolol succinate. Der Pharmacia Lettre, 3(4), 143-154.
  • Kadian, S. S., & Harikumar, S. (2016). Eudragit and its pharmaceutical significance. In
  • Kale, S. S., Saste, V. S., Ughade, P. L., & Baviskar, D. T. (2011). Bilayer tablet. International Journal of Pharmaceutical Sciences Review and Research, 9(1), 25-30.
  • Khanmohammadi, M., Garmarudi, A. B., Ghasemi, K., Jaliseh, H. K., & Kaviani, A. (2009). Diagnosis of colon cancer by attenuated total reflectance- fourier transform infrared microspectroscopy and soft independent modeling of class analogy. Medical Oncology, 26(3), 292-297.
  • KITAZAWA, S., JOHNO, I., ITO, Y., TERAMURA, S., & OKADA, J. (1975). Effects of hardness on the disintegration time and the dissolution rate of uncoated caffeine tablets. Journal of Pharmacy and Pharmacology, 27(10), 765-770.
  • Mohammed, M., Maringanti, P. S., & Mamidi, S. (2011). Formulation and evaluation of bilayered tablets of montelukast and levocetrizine dihydrochloride using natural and synthetic polymers. International Journal of drug delivery, 3(4), 597.
  • Mužíková, J., & Nováková, P. (2007). A study of the properties of compacts from silicified microcrystalline celluloses. Drug development and industrial pharmacy, 33(7), 775-781.
  • Narendra, C., Srinath, M., & Babu, G. (2006). Optimization of bilayer floating tablet containing metoprolol tartrate as a model drug for gastric retention. AAPS PharmSciTech, 7(2), E23-E29.
  • Nguyen, T. H., Morton, D., & Hapgood, K. (2015). Prediction of the tablet hardness: Exploration of microcrystalline cellulose and scale-up in wet granulation. Asia Pacific Confederation of Chemical Engineering Congress 2015: APCChE 2015, incorporating CHEMECA 2015,
  • Reddy, K. R., Mutalik, S., & Reddy, S. (2003). Once- daily sustained-release matrix tablets of nicorandil: formulation and in vitro evaluation. AAPS PharmSciTech, 4(4), 480-488.
  • Sánchez, L., Torrado, S., & Lastres, J. (1995). Gelatinized/freeze-dried starch as excipient in sustained release tablets. International journal of pharmaceutics, 115(2), 201-208.
  • Scott, L. J., & Perry, C. M. (2000). Tramadol. Drugs, 60(1), 139-176.
  • Shamma, R. N., & Basha, M. (2013). Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation. Powder technology, 237, 406-414.
  • Shiyani, B., Gattani, S., & Surana, S. (2008). Formulation and evaluation of bi-layer tablet of metoclopramide hydrochloride and ibuprofen. AAPS PharmSciTech, 9(3), 818-827.
  • Skowyra, J., Pietrzak, K., & Alhnan, M. A. (2015). Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. European Journal of Pharmaceutical Sciences, 68, 11-17.
  • Stegner, W. (2000). Angle of repose. Penguin.
  • SWAIN, R. P., KUMARI, T. R., & PANDA, S. (2016). Formulation development and evaluation of sustained release ibuprofen tablets with acrylic polymers (Eudragit) and HPMC. International Journal of Pharmacy and Pharmaceutical Sciences, 8(2).
  • Ward, B., & Alexander-Williams, J. M. (1999). Paracetamol revisited: a review of the pharmacokinetics and pharmacodynamics. Acute Pain, 2(3), 139-149.
  • Weitzel, M. J. (2012). The estimation and use of measurement uncertainty for a drug substance test procedure validated according to USP

Cite this article

    APA : Javed, R., Ijaz, S., & Waqar, K. (2016). Development and Characterization of Bilayer Sustained Release Tablets of Tramadol HCl and Acetaminophen. Global Pharmaceutical Sciences Review, I(I), 6-16. https://doi.org/10.31703/gpsr.2016(I-I).02
    CHICAGO : Javed, Rashid, Sana Ijaz, and Kainat Waqar. 2016. "Development and Characterization of Bilayer Sustained Release Tablets of Tramadol HCl and Acetaminophen." Global Pharmaceutical Sciences Review, I (I): 6-16 doi: 10.31703/gpsr.2016(I-I).02
    HARVARD : JAVED, R., IJAZ, S. & WAQAR, K. 2016. Development and Characterization of Bilayer Sustained Release Tablets of Tramadol HCl and Acetaminophen. Global Pharmaceutical Sciences Review, I, 6-16.
    MHRA : Javed, Rashid, Sana Ijaz, and Kainat Waqar. 2016. "Development and Characterization of Bilayer Sustained Release Tablets of Tramadol HCl and Acetaminophen." Global Pharmaceutical Sciences Review, I: 6-16
    MLA : Javed, Rashid, Sana Ijaz, and Kainat Waqar. "Development and Characterization of Bilayer Sustained Release Tablets of Tramadol HCl and Acetaminophen." Global Pharmaceutical Sciences Review, I.I (2016): 6-16 Print.
    OXFORD : Javed, Rashid, Ijaz, Sana, and Waqar, Kainat (2016), "Development and Characterization of Bilayer Sustained Release Tablets of Tramadol HCl and Acetaminophen", Global Pharmaceutical Sciences Review, I (I), 6-16
    TURABIAN : Javed, Rashid, Sana Ijaz, and Kainat Waqar. "Development and Characterization of Bilayer Sustained Release Tablets of Tramadol HCl and Acetaminophen." Global Pharmaceutical Sciences Review I, no. I (2016): 6-16. https://doi.org/10.31703/gpsr.2016(I-I).02