01 Pages : 1-10
References
- Budowle, B., Leggitt, J., Defenbaugh, D., Keys, K., & Malkiewicz, S. (2000). The Presumptive Reagent Fluorescein for Detection of Dilute Bloodstains and Subsequent STR Typing of Recovered DNA, Journal of Forensic Sciences, 45, (5)1090-1092.
- Chandan, H. R., Schiffman, J. D., & Balakrishna, R. G. (2018). Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical, 258, 1191-1214.
- Chen, B., Li, W., Lv, C., Zhao, M., Jin, H., Jin, H., & Tang, X. (2013). A fluorescent probe for highly selective and sensitive detection of hydrogen sulfide in living cells and cardiac tissues. The Analyst, 138(3), 946-951.
- Gao, B., Cui, L., Pan, Y., Xue, M., Zhu, B., Zhang, G., & Dong, C. (2017). A highly selective fluorescent probe based on Michael addition for fast detection of hydrogen sulfide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 457-461.
- Karunya, R., Jayaprakash, K. S., Gaikwad, R., Sajeesh, P., Ramshad, K., Muraleedharan, K. M., & Sen, A. K. (2019). Rapid measurement of hydrogen sulphide in human blood plasma using a microfluidic method. Scientific Reports, 9(1).
- Kumar, A., & Pal, D. (2016). Green Fluorescent Protein and Their Applications in Advance Research, Journal of Research in Engineering and Applied Sciences.
- Lalchhandama, K. (2016). The making of modern biotechnology: how ethidium bromide made fame. Science Vision 16 (1), 27-36.
- Lee, F. H., Chew, C. Y., Hwu, J. R., & Tan, K. T. (2018). A biotinylated fluorescent probe for the specific and quantitative determination of blood glucose. Journal of the Chinese Chemical Society, 66, 114-118.
- Leung, C. W. T., Hong, Y., Hanske, J., Zhao, E., Chen, S., Pletneva, E. V., & Tang, B. Z. (2013). Superior Fluorescent Probe for Detection of Cardiolipin. Analytical Chemistry, 86(2), 1263- 1268.
- Li, H., Yang, Y., Qi, X., Zhou, X., Ren, W. X., Deng, M., & Teichmann, A. T. (2020). Design and Applications of a Novel Fluorescent Probe for Detecting Glutathione in Biological Samples. Analytica Chimica Acta.
- Lin, X., Lu, X., Zhou, J., Ren, H., Dong, X., Zhao, W., & Chen, Z. (2019). An instantaneous fluorescent probe for the specific detection of H2S. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.
- Liu, C., Qi, F., Wen, F., Long, L., Liu, A., & Yang, R. (2018). Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR- excitable cyanine probe. Methods and Applications in Fluorescence, 6(2), 024001.
- Long, L., Zhou, L., Wang, L., Meng, S., Gong, A., & Zhang, C. (2014). A ratiometric fluorescent probe for iron (III) and its application for detection of iron (III) in human blood serum. Analytica Chimica Acta, 812, 145-151
- Martynov, V. I., Pakhomov, A. A., Popova, N. V., Deyev, I. E., Petrenko, A. G. (2016). Synthetic fluorophores for visualizing biomolecules in living systems, 08, 33-46.
- Masilamani, V., Al-Zhrani, K., Al-Salhi, M., Al-Diab, A., & Al-Ageily, M. (2004). Cancer diagnosis by autofluorescence of blood components. Journal of Luminescence, 109(3-4), 143-154.
- Matea, C., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., & Mocan, L. (2017). Quantum dots in imaging, drug delivery and sensor applications. International Journal of Nanomedicine, 12, 5421-5431.
- Mathew, T., Kundan, S., Abdulsamad, M. I., Menon, S., Dharan, B. S., & Jayakumar, K. (2014). Multiple Muscular Ventricular Septal Defects: Use of Fluorescein Dye to Identify Residual Defects. The Annals of Thoracic Surgery, 97(1), 27-28.
- Olson, K. R. (2009). Is hydrogen sulfide a circulating
- Peng, H., Cheng, Y., Dai, C., King, A. L., Predmore, B. L., Lefer, D. J., & Wang, B. (2011). A Fluorescent Probe for Fast and Quantitative Detection of Hydrogen Sulfide in Blood. Angewandte Chemie International Edition, 50(41), 9672-9675.
- Qian, Y., Zhang, L., Ding, S., Deng, X., He, C., Zheng, X. E., & Zhao, J. (2012). A fluorescent probe for rapid detection of hydrogen sulfide in blood plasma and brain tissues in mice. Chemical Science, 3(10), 2920.
- Olson, K. R. (2012). A Practical Look at the Chemistry and Biology of Hydrogen Sulfide. Antioxidants & Redox Signaling, 17(1), 32-44.
- Sun, X., & James, T. D. (2015). Glucose Sensing in Supramolecular Chemistry. Chemical Reviews, 115(15), 8001-8037.
- Ueno, T., Nagano, T. Fluorescent probes for sensing and imaging. Nat. Methods 2011, 8, 642−645
- Wang, C., Wang, Y., Wang, G., Huang, C., & Jia, N. (2019) A new mitochondria-targeting fluorescent probe for ratiometric detection of H2O2 in live cells, Analytica Chimica Acta, S0003-2670(19), 31368-6
- Whitfield, N. L., Kreimier, E. L., Verdial, F. C., Skovgaard, N., & Olson, K. R. (2008). Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signalling. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, 294(6), 1930-1937.
- Xuan, W., Sheng, C., Cao, Y., He, W., & Wang, W. (2012). Fluorescent Probes for the Detection of Hydrogen Sulfide in Biological Systems. Angewandte Chemie International Edition, 51(10), 2282-2284.
- Yang, G., Zhang, J., Zhu, S., Wang, Y., Feng, X., Yan, M., & Yu, J. (2018). Fast response and highly selective detection of hydrogen sulfide with a ratiometric two-photon fluorescent probe and its application for bioimaging. Sensors and Actuators B: Chemical, 261, 51-57
- Yang, X., Wang, Y., Liu, R., Zhang, Y., Tang, J., Yang, E., & Ye, Y. (2019). A novel ICT-based two-photon and NIR fluorescent probe for labile Fe2 detection and cell imaging in living cells. Sensors and Actuators B: Chemical.
- Zeng, Y. S., Gao, R. C., Wu, T. W., Cho, C., & Tan, K. T. (2016). Fluorescent Probe Encapsulated in SNAP-Tag Protein Cavity to Eliminate Non- specific Fluorescence and Increase Detection Sensitivity. Bioconjugate Chemistry, 27(8), 1872-1879.
- Budowle, B., Leggitt, J., Defenbaugh, D., Keys, K., & Malkiewicz, S. (2000). The Presumptive Reagent Fluorescein for Detection of Dilute Bloodstains and Subsequent STR Typing of Recovered DNA, Journal of Forensic Sciences, 45, (5)1090-1092.
- Chandan, H. R., Schiffman, J. D., & Balakrishna, R. G. (2018). Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical, 258, 1191-1214.
- Chen, B., Li, W., Lv, C., Zhao, M., Jin, H., Jin, H., & Tang, X. (2013). A fluorescent probe for highly selective and sensitive detection of hydrogen sulfide in living cells and cardiac tissues. The Analyst, 138(3), 946-951.
- Gao, B., Cui, L., Pan, Y., Xue, M., Zhu, B., Zhang, G., & Dong, C. (2017). A highly selective fluorescent probe based on Michael addition for fast detection of hydrogen sulfide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 457-461.
- Karunya, R., Jayaprakash, K. S., Gaikwad, R., Sajeesh, P., Ramshad, K., Muraleedharan, K. M., & Sen, A. K. (2019). Rapid measurement of hydrogen sulphide in human blood plasma using a microfluidic method. Scientific Reports, 9(1).
- Kumar, A., & Pal, D. (2016). Green Fluorescent Protein and Their Applications in Advance Research, Journal of Research in Engineering and Applied Sciences.
- Lalchhandama, K. (2016). The making of modern biotechnology: how ethidium bromide made fame. Science Vision 16 (1), 27-36.
- Lee, F. H., Chew, C. Y., Hwu, J. R., & Tan, K. T. (2018). A biotinylated fluorescent probe for the specific and quantitative determination of blood glucose. Journal of the Chinese Chemical Society, 66, 114-118.
- Leung, C. W. T., Hong, Y., Hanske, J., Zhao, E., Chen, S., Pletneva, E. V., & Tang, B. Z. (2013). Superior Fluorescent Probe for Detection of Cardiolipin. Analytical Chemistry, 86(2), 1263- 1268.
- Li, H., Yang, Y., Qi, X., Zhou, X., Ren, W. X., Deng, M., & Teichmann, A. T. (2020). Design and Applications of a Novel Fluorescent Probe for Detecting Glutathione in Biological Samples. Analytica Chimica Acta.
- Lin, X., Lu, X., Zhou, J., Ren, H., Dong, X., Zhao, W., & Chen, Z. (2019). An instantaneous fluorescent probe for the specific detection of H2S. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.
- Liu, C., Qi, F., Wen, F., Long, L., Liu, A., & Yang, R. (2018). Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR- excitable cyanine probe. Methods and Applications in Fluorescence, 6(2), 024001.
- Long, L., Zhou, L., Wang, L., Meng, S., Gong, A., & Zhang, C. (2014). A ratiometric fluorescent probe for iron (III) and its application for detection of iron (III) in human blood serum. Analytica Chimica Acta, 812, 145-151
- Martynov, V. I., Pakhomov, A. A., Popova, N. V., Deyev, I. E., Petrenko, A. G. (2016). Synthetic fluorophores for visualizing biomolecules in living systems, 08, 33-46.
- Masilamani, V., Al-Zhrani, K., Al-Salhi, M., Al-Diab, A., & Al-Ageily, M. (2004). Cancer diagnosis by autofluorescence of blood components. Journal of Luminescence, 109(3-4), 143-154.
- Matea, C., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., & Mocan, L. (2017). Quantum dots in imaging, drug delivery and sensor applications. International Journal of Nanomedicine, 12, 5421-5431.
- Mathew, T., Kundan, S., Abdulsamad, M. I., Menon, S., Dharan, B. S., & Jayakumar, K. (2014). Multiple Muscular Ventricular Septal Defects: Use of Fluorescein Dye to Identify Residual Defects. The Annals of Thoracic Surgery, 97(1), 27-28.
- Olson, K. R. (2009). Is hydrogen sulfide a circulating
- Peng, H., Cheng, Y., Dai, C., King, A. L., Predmore, B. L., Lefer, D. J., & Wang, B. (2011). A Fluorescent Probe for Fast and Quantitative Detection of Hydrogen Sulfide in Blood. Angewandte Chemie International Edition, 50(41), 9672-9675.
- Qian, Y., Zhang, L., Ding, S., Deng, X., He, C., Zheng, X. E., & Zhao, J. (2012). A fluorescent probe for rapid detection of hydrogen sulfide in blood plasma and brain tissues in mice. Chemical Science, 3(10), 2920.
- Olson, K. R. (2012). A Practical Look at the Chemistry and Biology of Hydrogen Sulfide. Antioxidants & Redox Signaling, 17(1), 32-44.
- Sun, X., & James, T. D. (2015). Glucose Sensing in Supramolecular Chemistry. Chemical Reviews, 115(15), 8001-8037.
- Ueno, T., Nagano, T. Fluorescent probes for sensing and imaging. Nat. Methods 2011, 8, 642−645
- Wang, C., Wang, Y., Wang, G., Huang, C., & Jia, N. (2019) A new mitochondria-targeting fluorescent probe for ratiometric detection of H2O2 in live cells, Analytica Chimica Acta, S0003-2670(19), 31368-6
- Whitfield, N. L., Kreimier, E. L., Verdial, F. C., Skovgaard, N., & Olson, K. R. (2008). Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signalling. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, 294(6), 1930-1937.
- Xuan, W., Sheng, C., Cao, Y., He, W., & Wang, W. (2012). Fluorescent Probes for the Detection of Hydrogen Sulfide in Biological Systems. Angewandte Chemie International Edition, 51(10), 2282-2284.
- Yang, G., Zhang, J., Zhu, S., Wang, Y., Feng, X., Yan, M., & Yu, J. (2018). Fast response and highly selective detection of hydrogen sulfide with a ratiometric two-photon fluorescent probe and its application for bioimaging. Sensors and Actuators B: Chemical, 261, 51-57
- Yang, X., Wang, Y., Liu, R., Zhang, Y., Tang, J., Yang, E., & Ye, Y. (2019). A novel ICT-based two-photon and NIR fluorescent probe for labile Fe2 detection and cell imaging in living cells. Sensors and Actuators B: Chemical.
- Zeng, Y. S., Gao, R. C., Wu, T. W., Cho, C., & Tan, K. T. (2016). Fluorescent Probe Encapsulated in SNAP-Tag Protein Cavity to Eliminate Non- specific Fluorescence and Increase Detection Sensitivity. Bioconjugate Chemistry, 27(8), 1872-1879.
Cite this article
-
APA : Naseem, U., Ayub, A., & Iqbal, F. (2019). Use of Fluorescent Probe for the Fast and Quantitative Detection of Chemicals in the Blood. Global Pharmaceutical Sciences Review, IV(I), 1-10. https://doi.org/10.31703/gpsr.2019(IV-I).01
-
CHICAGO : Naseem, Urooj, Ayesha Ayub, and Fatima Iqbal. 2019. "Use of Fluorescent Probe for the Fast and Quantitative Detection of Chemicals in the Blood." Global Pharmaceutical Sciences Review, IV (I): 1-10 doi: 10.31703/gpsr.2019(IV-I).01
-
HARVARD : NASEEM, U., AYUB, A. & IQBAL, F. 2019. Use of Fluorescent Probe for the Fast and Quantitative Detection of Chemicals in the Blood. Global Pharmaceutical Sciences Review, IV, 1-10.
-
MHRA : Naseem, Urooj, Ayesha Ayub, and Fatima Iqbal. 2019. "Use of Fluorescent Probe for the Fast and Quantitative Detection of Chemicals in the Blood." Global Pharmaceutical Sciences Review, IV: 1-10
-
MLA : Naseem, Urooj, Ayesha Ayub, and Fatima Iqbal. "Use of Fluorescent Probe for the Fast and Quantitative Detection of Chemicals in the Blood." Global Pharmaceutical Sciences Review, IV.I (2019): 1-10 Print.
-
OXFORD : Naseem, Urooj, Ayub, Ayesha, and Iqbal, Fatima (2019), "Use of Fluorescent Probe for the Fast and Quantitative Detection of Chemicals in the Blood", Global Pharmaceutical Sciences Review, IV (I), 1-10
-
TURABIAN : Naseem, Urooj, Ayesha Ayub, and Fatima Iqbal. "Use of Fluorescent Probe for the Fast and Quantitative Detection of Chemicals in the Blood." Global Pharmaceutical Sciences Review IV, no. I (2019): 1-10. https://doi.org/10.31703/gpsr.2019(IV-I).01