NANOTECHNOLOGY A NEW HOPE FOR THE CURE OF OSTEOARTHRITIS OSTEOPOROSIS AND RHEUMATOID ARTHRITIS

http://dx.doi.org/10.31703/gpsr.2020(V-I).04      10.31703/gpsr.2020(V-I).04      Published : Dec 2020
Authored by : Fariah Qaiser , Muhammad Ibrahim , Rabia Mazhar , Farhan Sohail

04 Pages : 25-39

References

  • Abdal Dayem, A., Lee, S. B., & Cho, S. G. (2018). The impact of metallic nanoparticles on stem cell proliferation and differentiation. Nanomaterials, 8(10), 761.
  • Ain, Q., Zeeshan, M., Khan, S., & Ali, H. (2019). Biomimetic hydroxyapatite as potential polymeric nanocarrier for the treatment of rheumatoid arthritis. Journal of Biomedical Materials Research Part A, 107(12), 2595-2600.
  • Bajpayee, A. G., Quadir, M. A., Hammond, P. T., & Grodzinsky, A. J. (2016). Charge based intra- cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine- induced catabolism long term. Osteoarthritis and cartilage, 24(1), 71-81.
  • Barry, M., Pearce, H., Cross, L., Tatullo, M., & Gaharwar, A. K. (2016). Advances in Nanotechnology for the Treatment of Osteoporosis. Current osteoporosis reports, 14(3), 87-94.
  • Bishnoi, M., Jain, A., Hurkat, P., & Jain, S. K. (2016). Chondroitin sulphate: a focus on osteoarthritis. Glycoconjugate journal, 33(5), 693-705.
  • Bottini, M., Bhattacharya, K., Fadeel, B., Magrini, A., Bottini, N., & Rosato, N. (2016). Nanodrugs to target articular cartilage: an emerging platform for osteoarthritis therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 255-268.
  • Brown, S., Kumar, S., & Sharma, B. (2019). Intra- articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomaterialia, 93, 239-257.
  • Burmester, G. R., & Pope, J. E. (2017). Novel treatment strategies in rheumatoid arthritis. The Lancet, 389(10086), 2338-2348
  • Chen, M., Daddy JC, K. A., Xiao, Y., Ping, Q., & Zong, L. (2017). Advanced nanomedicine for rheumatoid arthritis treatment: focus on active targeting.
  • Chen, Z., Chen, J., Wu, L., Li, W., Chen, J., Cheng, H., & Cai, B. (2013). Hyaluronic acid-coated bovine serum albumin nanoparticles loaded with brucine as selective nanovectors for intra- articular injection. International journal of nanomedicine, 8, 3843.
  • Cheng, Z., Landish, B., Chi, Z., Nannan, C., Jingyu, D., Sen, L., & Xiangjin, L. (2018). 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG. Materials Science and Engineering: C, 82, 244-252.
  • Cho, H., Stuart, J. M., Magid, R., Danila, D. C., Hunsaker, T., Pinkhassik, E., & Hasty, K. A. (2014). Theranostic immunoliposomes for osteoarthritis. Nanomedicine: Nanotechnology, Biology and Medicine, 10(3), 619-627.
  • Chowdhury, A., Kunjiappan, S., Panneerselvam, T., Somasundaram, B., & Bhattacharjee, C. (2017). Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. International nano letters, 7(2), 91- 122.
  • Chuang, S. Y., Lin, C. H., Huang, T. H., & Fang, J. Y. (2018). Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials, 8(1), 42.
  • Dolati, S., Sadreddini, S., Rostamzadeh, D., Ahmadi, M., Jadidi-Niaragh, F., & Yousefi, M. (2016). Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomedicine & pharmacotherapy, 80, 30-41.
  • Dubey, K. A., Chaudhari, C. V., Bhardwaj, Y. K., & Varshney, L. (2017). Polymers, blends and nanocomposites for implants, scaffolds, and controlled drug release applications. In Advances in Biomaterials for Biomedical Applications (pp. 1-44). Springer, Singapore.
  • Eichaker, L. R., Cho, H., Duvall, C. L., Werfel, T. A., & Hasty, K. A. (2014). Future nanomedicine for the diagnosis and treatment of osteoarthritis. Nanomedicine, 9(14), 2203-2215.
  • Evans, C. H., & Huard, J. (2015). Gene therapy approaches to regenerating the musculoskeletal system. Nature Reviews Rheumatology, 11(4), 234-242.
  • Fan, X. X., Xu, M. Z., Leung, E. L. H., Jun, C., Yuan, Z., & Liu, L. (2020). ROS-Responsive Berberine Polymeric Micelles Effectively Suppressed the Inflammation of Rheumatoid Arthritis by Targeting Mitochondria. Nano-Micro Letters, 12(1), 1-14.
  • Fang, G., Zhang, Q., Pang, Y., Thu, H. E., & Hussain, Z. (2019). Nanomedicines for improved targetability to inflamed synovium for treatment of rheumatoid arthritis: multi-functionalization as an emerging strategy to optimize therapeutic efficacy. Journal of Controlled Release, 303, 181- 208
  • Feng, X., & Chen, Y. (2018). Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. Journal of drug targeting, 26(10), 845- 857
  • Fiehn, C., Muller-Ladner, U., Gay, S., Krienke, S., Freudenberg-Konrad, S., Funk, J., ... & Wunder, A. (2004). Albumin-coupled methotrexate (MTX-HSA) is a new anti-arthritic drug which acts synergistically to MTX. Rheumatology, 43(9), 1097-1105.
  • Gao, Y., Lim, J., Teoh, S. H., & Xu, C. (2015). Emerging translational research on magnetic nanoparticles for regenerative medicine. Chemical Society reviews, 44(17), 6306-6329.
  • Garg, N. K., Sharma, G., Singh, B., Nirbhavane, P., Tyagi, R. K., Shukla, R., & Katare, O. P. (2017). Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): An improved dermatokinetic profile for inflammatory disorder (s). International Journal of pharmaceutics, 517(1- 2), 413-431.
  • Goenka, S., Sant, V., & Sant, S. (2014). Graphene- based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 173, 75-88.
  • Gouveia, V. M., Lima, S. C. A., Nunes, C., & Reis, S. (2015). Non-biologic nanodelivery therapies for rheumatoid arthritis. Journal of biomedical nanotechnology, 11(10), 1701-1721.
  • Gu, W., Wu, C., Chen, J., & Xiao, Y. (2013). Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. International journal of nanomedicine, 8, 2305.
  • Jafari, M., Soltani, M., Naahidi, S., N Karunaratne, D., & Chen, P. (2012). Nonviral approach for targeted nucleic acid delivery. Current medicinal chemistry, 19(2), 197-208.
  • Jeon, O. H., & Elisseeff, J. (2016). Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Delivery and Translational Research, 6(2), 105-120.
  • Kang, C., Jung, E., Hyeon, H., Seon, S., & Lee, D. (2020). Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomedicine: Nanotechnology, Biology and Medicine, 23, 102104.
  • Kapoor, B., Singh, S. K., Gulati, M., Gupta, R., & Vaidya, Y. (2014). Application of liposomes in treatment of rheumatoid arthritis: quo vadis. The scientific world Journal, 2014.
  • Kaur, A., Bhoop, B. S., Chhibber, S., Sharma, G., Gondil, V. S., & Katare, O. P. (2017). Supramolecular nano-engineered lipidic carriers based on diflunisal-phospholipid complex for transdermal delivery: QbD based optimization, characterization, and preclinical investigations for management of rheumatoid arthritis. International Journal of Pharmaceutics, 533(1), 206-224.
  • Kim, K., & Fisher, J. P. (2007). Nanoparticle technology in bone tissue engineering. Journal of drug targeting, 15(4), 241-252.
  • Kim, M. J., Park, J. S., Lee, S. J., Jang, J., Park, J. S., Back, S. H., ... & Kwon, I. C. (2015). Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. Journal of Controlled Release, 216, 140-148.
  • Kumar, A., Zhang, X., & Liang, X. J. (2013). Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnology advances, 31(5), 593-606.
  • Lawson, T. B., Mäkelä, J. T., Klein, T., Snyder, B. D., & Grinstaff, M. W. (2020). Nanotechnology and Osteoarthritis. Part 2: Opportunities for advanced devices and therapeutics. Journal of Orthopaedic Research®.
  • Lee, H., Lee, M. Y., Bhang, S. H., Kim, B. S., Kim, Y. S., Ju, J. H., ... & Hahn, S. K. (2014). Hyaluronate- gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. Acs Nano, 8(5), 4790-4798.
  • Li, Y., Cao, J., Han, S., Liang, Y., Zhang, T., Zhao, H., ... & Sun, Y. (2018). ECM based injectable thermo- sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis. Artificial cells, nanomedicine, and biotechnology, 46(sup2), 152-160.
  • Loffredo, F. S., Pancoast, J. R., Cai, L., Vannelli, T., Dong, J. Z., Lee, R. T., & Patwari, P. (2014). Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis & rheumatology, 66(5), 1247-1255.
  • Lu, J. W., Yang, F., Ke, Q. F., Xie, X. T., & Guo, Y. P. (2018). Magnetic nanoparticles modified- porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomedicine: Nanotechnology, Biology and Medicine, 14(3), 811-822.
  • Lungwitz, U., Breunig, M., Blunk, T., & Göpferich, A. (2005). Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 60(2), 247-266.
  • M Cardoso, M., N Peca, I., & CA Roque, A. (2012). Antibody-conjugated nanoparticles for therapeutic applications. Current medicinal chemistry, 19(19), 3103-3127.
  • Mackey, P. A., & Whitaker, M. D. (2015). Osteoporosis: a therapeutic update. The Journal for Nurse Practitioners, 11(10), 1011-1017.
  • Maudens, P., Seemayer, C. A., Thauvin, C., Gabay, C., Jordan, O., & Allémann, E. (2018). Nanocrystal- polymer particles: extended delivery carriers for osteoarthritis treatment. Small, 14(8), 1703108
  • Meneksedag-Erol, D., Tang, T., & Uludağ, H. (2018). Mechanistic insights into the role of glycosaminoglycans in delivery of polymeric nucleic acid nanoparticles by molecular dynamics simulations. Biomaterials, 156, 107- 120.
  • Mohammadinejad, R., Ashrafizadeh, M., Pardakhty, A., Uzieliene, I., Denkovskij, J., Bernotiene, E., ... & Mobasheri, A. (2020). Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities. Current Rheumatology Reports, 22(4).
  • Mohammed, M. A., Syeda, J., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non- parenteral drug delivery. Pharmaceutics, 9(4), 53.
  • Monteiro, N., Martins, A., Reis, R. L., & Neves, N. M. (2014). Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 11(101), 20140459.
  • Monteiro, N., Martins, A., Reis, R. L., & Neves, N. M. (2015). Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regenerative Therapy, 1, 109-118.
  • Mota, A. H., Direito, R., Carrasco, M. P., Rijo, P., Ascensão, L., Viana, A. S., ... & Kuplennik, N. (2019). Combination of hyaluronic acid and PLGA particles as hybrid systems for viscosupplementation in osteoarthritis. International journal of pharmaceutics, 559, 13- 22.
  • Nasiri, N., Hosseini, S., Alini, M., Khademhosseini, A., & Eslaminejad, M. B. (2019). Targeted cell delivery for articular cartilage regeneration and osteoarthritis treatment. Drug discovery today, 24(11), 2212-2224.
  • Nitta, S. K., & Numata, K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. International journal of molecular sciences, 14(1), 1629-1654.
  • Oliveira, F. C., Carvalho, J. O., Gusmão, S. B. S., de Sousa Gonçalves, L., Mendes, L. M. S., Freitas, S. A. P., ... & Lobo, A. O. (2019). High loads of nano- hydroxyapatite/graphene nanoribbon composites guided bone regeneration using an osteoporotic animal model. International journal of nanomedicine, 14, 865.
  • Pi, Y., Zhang, X., Shao, Z., Zhao, F., Hu, X., & Ao, Y. (2015). Intra-articular delivery of anti-Hif-2α siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene therapy, 22(6), 439-448.
  • Pinelli, F., Ortolà, Ó. F., Makvandi, P., Perale, G., & Rossi, F. (2020). In vivo drug delivery applications of nanogels: a review. Nanomedicine, 15(27), 2707-2727.
  • Pirmardvand Chegini, S., Varshosaz, J., & Taymouri, S. (2018). Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artificial cells, nanomedicine, and biotechnology, 46(sup2), 502-514.
  • Prasad, L. K., O'Mary, H., & Cui, Z. (2015). Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine, 10(13), 2063-2074.
  • Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid- based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26(6).
  • Qayoom, I., Teotia, A. K., & Kumar, A. (2019). Nanohydroxyapatite Based Ceramic Carrier Promotes Bone Formation in a Femoral Neck Canal Defect in Osteoporotic Rats. Biomacromolecules, 21(2), 328-337.
  • Rabiei, M., Kashanian, S., Samavati, S. S., Derakhshankhah, H., Jamasb, S., & McInnes, S. J. (2020). Nanotechnology application in drug delivery to Osteoarthritis (OA), Rheumatoid arthritis (RA), and Osteoporosis (OSP). Journal of Drug Delivery Science and Technology, 102011.
  • Ricker, A., Liu-Snyder, P., & Webster, T. J. (2008). The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement. International Journal of Nanomedicine, 3(1), 125.
  • Roy, K., Kanwar, R. K., & Kanwar, J. R. (2015). Molecular targets in arthritis and recent trends in nanotherapy. International journal of nanomedicine, 10, 5407.
  • Sabokbar, A., Fujikawa, Y., Murray, D. W., & Athanasou, N. A. (1997). Radio-opaque agents in bone cement increase bone resorption. The Journal of bone and joint surgery. British volume, 79(1), 129-134.
  • Sacchetti, C., Liu-Bryan, R., Magrini, A., Rosato, N., Bottini, N., & Bottini, M. (2014). Polyethylene- glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACS nano, 8(12), 12280-12291.
  • Saiz, E., Zimmermann, E. A., Lee, J. S., Wegst, U. G., & Tomsia, A. P. (2013). Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 29(1), 103-115.
  • Samarasinghe, R. M., Kanwar, R. K., & Kanwar, J. R. (2014). The effect of oral administration of iron saturated-bovine lactoferrin encapsulated chitosan-nanocarriers on osteoarthritis. Biomaterials, 35(26), 7522-7534.
  • Schultz, C. (2019). Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis. British journal of pharmacology, 176(1), 26-37.
  • Scott, T. G., Blackburn, G., Ashley, M., Bayer, I. S., Ghosh, A., Biris, A. S., & Biswas, A. (2013). Advances in bionanomaterials for bone tissue engineering. Journal of nanoscience and nanotechnology, 13(1), 1-22.
  • Sezlev Bilecen, D., Uludag, H., & Hasirci, V. (2019). Development of PEI-RANK siRNA complex loaded PLGA nanocapsules for the treatment of osteoporosis. Tissue Engineering Part A, 25(1-2), 34-43.
  • Shen, S. C., Letchmanan, K., Chow, P. S., & Tan, R. B. H. (2019). Antibiotic elution and mechanical property of TiO2 nanotubes functionalized PMMA-based bone cements. Journal of the Mechanical Behavior of Biomedical Materials, 91, 91-98.
  • Song, F., Li, X., Wang, Q., Liao, L., & Zhang, C. (2015). Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. Journal of biomedical nanotechnology, 11(1), 40-52.
  • Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews, 99, 28-51.
  • Syed, A., & Devi, V. K. (2019). Potential of targeted drug delivery systems in treatment of rheumatoid arthritis. Journal of Drug Delivery Science and Technology, 53, 101217.
  • Tarner, I. H., & Müller-Ladner, U. (2008). Drug delivery systems for the treatment of rheumatoid arthritis. Expert opinion on drug delivery, 5(9), 1027-1037.
  • Trujillo-Nolasco, R. M., Morales-Avila, E., Ocampo- García, B. E., Ferro-Flores, G., Gibbens-Bandala, B. V., Escudero-Castellanos, A., & Isaac-Olive, K. (2019). Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Materials Science and Engineering: C, 103, 109766.
  • Volpi, N. (2011). Anti-inflammatory activity of chondroitin sulphate: new functions from an old natural macromolecule. Inflammopharmacology, 19(6), 299-306.
  • Walmsley, G. G., McArdle, A., Tevlin, R., Momeni, A., Atashroo, D., Hu, M. S., ... & Wan, D. C. (2015). Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1253-1263.
  • Wang, P., Perche, F., Logeart-Avramoglou, D., & Pichon, C. (2019). RNA-based therapy for osteogenesis. International journal of pharmaceutics, 569, 118594.
  • Wang, Q., Chen, B., Ma, F., Lin, S., Cao, M., Li, Y., & Gu, N. (2017). Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Research, 10(2), 626-642.
  • Wang, Q., Li, Y., Chen, X., Jiang, H., Zhang, Z., & Sun, X. (2019). Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection. Nano Research, 12(2), 421-428
  • Webster, T. J., & Ahn, E. S. (2006). Nanostructured biomaterials for tissue engineering bone. In Tissue Engineering II (pp. 275-308). Springer, Berlin, Heidelberg.
  • Wei, D., Jung, J., Yang, H., Stout, D. A., & Yang, L. (2016). Nanotechnology treatment options for osteoporosis and its corresponding consequences. Current osteoporosis reports, 14(5), 239-247.
  • Xiao, S., & Chen, L. (2020). The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. Journal of Controlled Release.
  • Yallapu, M. M., Nagesh, P. K. B., Jaggi, M., & Chauhan, S. C. (2015). Therapeutic applications of curcumin nanoformulations. The AAPS journal, 17(6), 1341-1356.
  • Yang, M., Ding, J., Feng, X., Chang, F., Wang, Y., Gao, Z., ... & Chen, X. (2017). Scavenger receptor-mediated targeted treatment of collagen- induced arthritis by dextran sulfate- methotrexate prodrug. Theranostics, 7(1), 97.
  • Zarins, J., Pilmane, M., Sidhoma, E., Salma, I., & Locs, J. (2019). The role of strontium enriched hydroxyapatite and tricalcium phosphate biomaterials in osteoporotic bone regeneration. Symmetry, 11(2), 229.
  • Zha, L., Banik, B., & Alexis, F. (2011). Stimulus responsive nanogels for drug delivery. Soft Matter, 7(13), 5908-5916.
  • Zhang, Q., Dehaini, D., Zhang, Y., Zhou, J., Chen, X., Zhang, L., ... & Zhang, L. (2018). Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nature nanotechnology, 13(12), 1182-1190.
  • Zhang, S., Wu, L., Cao, J., Wang, K., Ge, Y., Ma, W., ... & Shen, S. (2018). Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy. Colloids and Surfaces B: Biointerfaces, 170, 224-232.
  • Abdal Dayem, A., Lee, S. B., & Cho, S. G. (2018). The impact of metallic nanoparticles on stem cell proliferation and differentiation. Nanomaterials, 8(10), 761.
  • Ain, Q., Zeeshan, M., Khan, S., & Ali, H. (2019). Biomimetic hydroxyapatite as potential polymeric nanocarrier for the treatment of rheumatoid arthritis. Journal of Biomedical Materials Research Part A, 107(12), 2595-2600.
  • Bajpayee, A. G., Quadir, M. A., Hammond, P. T., & Grodzinsky, A. J. (2016). Charge based intra- cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine- induced catabolism long term. Osteoarthritis and cartilage, 24(1), 71-81.
  • Barry, M., Pearce, H., Cross, L., Tatullo, M., & Gaharwar, A. K. (2016). Advances in Nanotechnology for the Treatment of Osteoporosis. Current osteoporosis reports, 14(3), 87-94.
  • Bishnoi, M., Jain, A., Hurkat, P., & Jain, S. K. (2016). Chondroitin sulphate: a focus on osteoarthritis. Glycoconjugate journal, 33(5), 693-705.
  • Bottini, M., Bhattacharya, K., Fadeel, B., Magrini, A., Bottini, N., & Rosato, N. (2016). Nanodrugs to target articular cartilage: an emerging platform for osteoarthritis therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 255-268.
  • Brown, S., Kumar, S., & Sharma, B. (2019). Intra- articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomaterialia, 93, 239-257.
  • Burmester, G. R., & Pope, J. E. (2017). Novel treatment strategies in rheumatoid arthritis. The Lancet, 389(10086), 2338-2348
  • Chen, M., Daddy JC, K. A., Xiao, Y., Ping, Q., & Zong, L. (2017). Advanced nanomedicine for rheumatoid arthritis treatment: focus on active targeting.
  • Chen, Z., Chen, J., Wu, L., Li, W., Chen, J., Cheng, H., & Cai, B. (2013). Hyaluronic acid-coated bovine serum albumin nanoparticles loaded with brucine as selective nanovectors for intra- articular injection. International journal of nanomedicine, 8, 3843.
  • Cheng, Z., Landish, B., Chi, Z., Nannan, C., Jingyu, D., Sen, L., & Xiangjin, L. (2018). 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG. Materials Science and Engineering: C, 82, 244-252.
  • Cho, H., Stuart, J. M., Magid, R., Danila, D. C., Hunsaker, T., Pinkhassik, E., & Hasty, K. A. (2014). Theranostic immunoliposomes for osteoarthritis. Nanomedicine: Nanotechnology, Biology and Medicine, 10(3), 619-627.
  • Chowdhury, A., Kunjiappan, S., Panneerselvam, T., Somasundaram, B., & Bhattacharjee, C. (2017). Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. International nano letters, 7(2), 91- 122.
  • Chuang, S. Y., Lin, C. H., Huang, T. H., & Fang, J. Y. (2018). Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials, 8(1), 42.
  • Dolati, S., Sadreddini, S., Rostamzadeh, D., Ahmadi, M., Jadidi-Niaragh, F., & Yousefi, M. (2016). Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomedicine & pharmacotherapy, 80, 30-41.
  • Dubey, K. A., Chaudhari, C. V., Bhardwaj, Y. K., & Varshney, L. (2017). Polymers, blends and nanocomposites for implants, scaffolds, and controlled drug release applications. In Advances in Biomaterials for Biomedical Applications (pp. 1-44). Springer, Singapore.
  • Eichaker, L. R., Cho, H., Duvall, C. L., Werfel, T. A., & Hasty, K. A. (2014). Future nanomedicine for the diagnosis and treatment of osteoarthritis. Nanomedicine, 9(14), 2203-2215.
  • Evans, C. H., & Huard, J. (2015). Gene therapy approaches to regenerating the musculoskeletal system. Nature Reviews Rheumatology, 11(4), 234-242.
  • Fan, X. X., Xu, M. Z., Leung, E. L. H., Jun, C., Yuan, Z., & Liu, L. (2020). ROS-Responsive Berberine Polymeric Micelles Effectively Suppressed the Inflammation of Rheumatoid Arthritis by Targeting Mitochondria. Nano-Micro Letters, 12(1), 1-14.
  • Fang, G., Zhang, Q., Pang, Y., Thu, H. E., & Hussain, Z. (2019). Nanomedicines for improved targetability to inflamed synovium for treatment of rheumatoid arthritis: multi-functionalization as an emerging strategy to optimize therapeutic efficacy. Journal of Controlled Release, 303, 181- 208
  • Feng, X., & Chen, Y. (2018). Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. Journal of drug targeting, 26(10), 845- 857
  • Fiehn, C., Muller-Ladner, U., Gay, S., Krienke, S., Freudenberg-Konrad, S., Funk, J., ... & Wunder, A. (2004). Albumin-coupled methotrexate (MTX-HSA) is a new anti-arthritic drug which acts synergistically to MTX. Rheumatology, 43(9), 1097-1105.
  • Gao, Y., Lim, J., Teoh, S. H., & Xu, C. (2015). Emerging translational research on magnetic nanoparticles for regenerative medicine. Chemical Society reviews, 44(17), 6306-6329.
  • Garg, N. K., Sharma, G., Singh, B., Nirbhavane, P., Tyagi, R. K., Shukla, R., & Katare, O. P. (2017). Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): An improved dermatokinetic profile for inflammatory disorder (s). International Journal of pharmaceutics, 517(1- 2), 413-431.
  • Goenka, S., Sant, V., & Sant, S. (2014). Graphene- based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 173, 75-88.
  • Gouveia, V. M., Lima, S. C. A., Nunes, C., & Reis, S. (2015). Non-biologic nanodelivery therapies for rheumatoid arthritis. Journal of biomedical nanotechnology, 11(10), 1701-1721.
  • Gu, W., Wu, C., Chen, J., & Xiao, Y. (2013). Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. International journal of nanomedicine, 8, 2305.
  • Jafari, M., Soltani, M., Naahidi, S., N Karunaratne, D., & Chen, P. (2012). Nonviral approach for targeted nucleic acid delivery. Current medicinal chemistry, 19(2), 197-208.
  • Jeon, O. H., & Elisseeff, J. (2016). Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Delivery and Translational Research, 6(2), 105-120.
  • Kang, C., Jung, E., Hyeon, H., Seon, S., & Lee, D. (2020). Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomedicine: Nanotechnology, Biology and Medicine, 23, 102104.
  • Kapoor, B., Singh, S. K., Gulati, M., Gupta, R., & Vaidya, Y. (2014). Application of liposomes in treatment of rheumatoid arthritis: quo vadis. The scientific world Journal, 2014.
  • Kaur, A., Bhoop, B. S., Chhibber, S., Sharma, G., Gondil, V. S., & Katare, O. P. (2017). Supramolecular nano-engineered lipidic carriers based on diflunisal-phospholipid complex for transdermal delivery: QbD based optimization, characterization, and preclinical investigations for management of rheumatoid arthritis. International Journal of Pharmaceutics, 533(1), 206-224.
  • Kim, K., & Fisher, J. P. (2007). Nanoparticle technology in bone tissue engineering. Journal of drug targeting, 15(4), 241-252.
  • Kim, M. J., Park, J. S., Lee, S. J., Jang, J., Park, J. S., Back, S. H., ... & Kwon, I. C. (2015). Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. Journal of Controlled Release, 216, 140-148.
  • Kumar, A., Zhang, X., & Liang, X. J. (2013). Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnology advances, 31(5), 593-606.
  • Lawson, T. B., Mäkelä, J. T., Klein, T., Snyder, B. D., & Grinstaff, M. W. (2020). Nanotechnology and Osteoarthritis. Part 2: Opportunities for advanced devices and therapeutics. Journal of Orthopaedic Research®.
  • Lee, H., Lee, M. Y., Bhang, S. H., Kim, B. S., Kim, Y. S., Ju, J. H., ... & Hahn, S. K. (2014). Hyaluronate- gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. Acs Nano, 8(5), 4790-4798.
  • Li, Y., Cao, J., Han, S., Liang, Y., Zhang, T., Zhao, H., ... & Sun, Y. (2018). ECM based injectable thermo- sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis. Artificial cells, nanomedicine, and biotechnology, 46(sup2), 152-160.
  • Loffredo, F. S., Pancoast, J. R., Cai, L., Vannelli, T., Dong, J. Z., Lee, R. T., & Patwari, P. (2014). Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis & rheumatology, 66(5), 1247-1255.
  • Lu, J. W., Yang, F., Ke, Q. F., Xie, X. T., & Guo, Y. P. (2018). Magnetic nanoparticles modified- porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomedicine: Nanotechnology, Biology and Medicine, 14(3), 811-822.
  • Lungwitz, U., Breunig, M., Blunk, T., & Göpferich, A. (2005). Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 60(2), 247-266.
  • M Cardoso, M., N Peca, I., & CA Roque, A. (2012). Antibody-conjugated nanoparticles for therapeutic applications. Current medicinal chemistry, 19(19), 3103-3127.
  • Mackey, P. A., & Whitaker, M. D. (2015). Osteoporosis: a therapeutic update. The Journal for Nurse Practitioners, 11(10), 1011-1017.
  • Maudens, P., Seemayer, C. A., Thauvin, C., Gabay, C., Jordan, O., & Allémann, E. (2018). Nanocrystal- polymer particles: extended delivery carriers for osteoarthritis treatment. Small, 14(8), 1703108
  • Meneksedag-Erol, D., Tang, T., & Uludağ, H. (2018). Mechanistic insights into the role of glycosaminoglycans in delivery of polymeric nucleic acid nanoparticles by molecular dynamics simulations. Biomaterials, 156, 107- 120.
  • Mohammadinejad, R., Ashrafizadeh, M., Pardakhty, A., Uzieliene, I., Denkovskij, J., Bernotiene, E., ... & Mobasheri, A. (2020). Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities. Current Rheumatology Reports, 22(4).
  • Mohammed, M. A., Syeda, J., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non- parenteral drug delivery. Pharmaceutics, 9(4), 53.
  • Monteiro, N., Martins, A., Reis, R. L., & Neves, N. M. (2014). Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 11(101), 20140459.
  • Monteiro, N., Martins, A., Reis, R. L., & Neves, N. M. (2015). Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regenerative Therapy, 1, 109-118.
  • Mota, A. H., Direito, R., Carrasco, M. P., Rijo, P., Ascensão, L., Viana, A. S., ... & Kuplennik, N. (2019). Combination of hyaluronic acid and PLGA particles as hybrid systems for viscosupplementation in osteoarthritis. International journal of pharmaceutics, 559, 13- 22.
  • Nasiri, N., Hosseini, S., Alini, M., Khademhosseini, A., & Eslaminejad, M. B. (2019). Targeted cell delivery for articular cartilage regeneration and osteoarthritis treatment. Drug discovery today, 24(11), 2212-2224.
  • Nitta, S. K., & Numata, K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. International journal of molecular sciences, 14(1), 1629-1654.
  • Oliveira, F. C., Carvalho, J. O., Gusmão, S. B. S., de Sousa Gonçalves, L., Mendes, L. M. S., Freitas, S. A. P., ... & Lobo, A. O. (2019). High loads of nano- hydroxyapatite/graphene nanoribbon composites guided bone regeneration using an osteoporotic animal model. International journal of nanomedicine, 14, 865.
  • Pi, Y., Zhang, X., Shao, Z., Zhao, F., Hu, X., & Ao, Y. (2015). Intra-articular delivery of anti-Hif-2α siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene therapy, 22(6), 439-448.
  • Pinelli, F., Ortolà, Ó. F., Makvandi, P., Perale, G., & Rossi, F. (2020). In vivo drug delivery applications of nanogels: a review. Nanomedicine, 15(27), 2707-2727.
  • Pirmardvand Chegini, S., Varshosaz, J., & Taymouri, S. (2018). Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artificial cells, nanomedicine, and biotechnology, 46(sup2), 502-514.
  • Prasad, L. K., O'Mary, H., & Cui, Z. (2015). Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine, 10(13), 2063-2074.
  • Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid- based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26(6).
  • Qayoom, I., Teotia, A. K., & Kumar, A. (2019). Nanohydroxyapatite Based Ceramic Carrier Promotes Bone Formation in a Femoral Neck Canal Defect in Osteoporotic Rats. Biomacromolecules, 21(2), 328-337.
  • Rabiei, M., Kashanian, S., Samavati, S. S., Derakhshankhah, H., Jamasb, S., & McInnes, S. J. (2020). Nanotechnology application in drug delivery to Osteoarthritis (OA), Rheumatoid arthritis (RA), and Osteoporosis (OSP). Journal of Drug Delivery Science and Technology, 102011.
  • Ricker, A., Liu-Snyder, P., & Webster, T. J. (2008). The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement. International Journal of Nanomedicine, 3(1), 125.
  • Roy, K., Kanwar, R. K., & Kanwar, J. R. (2015). Molecular targets in arthritis and recent trends in nanotherapy. International journal of nanomedicine, 10, 5407.
  • Sabokbar, A., Fujikawa, Y., Murray, D. W., & Athanasou, N. A. (1997). Radio-opaque agents in bone cement increase bone resorption. The Journal of bone and joint surgery. British volume, 79(1), 129-134.
  • Sacchetti, C., Liu-Bryan, R., Magrini, A., Rosato, N., Bottini, N., & Bottini, M. (2014). Polyethylene- glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACS nano, 8(12), 12280-12291.
  • Saiz, E., Zimmermann, E. A., Lee, J. S., Wegst, U. G., & Tomsia, A. P. (2013). Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 29(1), 103-115.
  • Samarasinghe, R. M., Kanwar, R. K., & Kanwar, J. R. (2014). The effect of oral administration of iron saturated-bovine lactoferrin encapsulated chitosan-nanocarriers on osteoarthritis. Biomaterials, 35(26), 7522-7534.
  • Schultz, C. (2019). Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis. British journal of pharmacology, 176(1), 26-37.
  • Scott, T. G., Blackburn, G., Ashley, M., Bayer, I. S., Ghosh, A., Biris, A. S., & Biswas, A. (2013). Advances in bionanomaterials for bone tissue engineering. Journal of nanoscience and nanotechnology, 13(1), 1-22.
  • Sezlev Bilecen, D., Uludag, H., & Hasirci, V. (2019). Development of PEI-RANK siRNA complex loaded PLGA nanocapsules for the treatment of osteoporosis. Tissue Engineering Part A, 25(1-2), 34-43.
  • Shen, S. C., Letchmanan, K., Chow, P. S., & Tan, R. B. H. (2019). Antibiotic elution and mechanical property of TiO2 nanotubes functionalized PMMA-based bone cements. Journal of the Mechanical Behavior of Biomedical Materials, 91, 91-98.
  • Song, F., Li, X., Wang, Q., Liao, L., & Zhang, C. (2015). Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. Journal of biomedical nanotechnology, 11(1), 40-52.
  • Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews, 99, 28-51.
  • Syed, A., & Devi, V. K. (2019). Potential of targeted drug delivery systems in treatment of rheumatoid arthritis. Journal of Drug Delivery Science and Technology, 53, 101217.
  • Tarner, I. H., & Müller-Ladner, U. (2008). Drug delivery systems for the treatment of rheumatoid arthritis. Expert opinion on drug delivery, 5(9), 1027-1037.
  • Trujillo-Nolasco, R. M., Morales-Avila, E., Ocampo- García, B. E., Ferro-Flores, G., Gibbens-Bandala, B. V., Escudero-Castellanos, A., & Isaac-Olive, K. (2019). Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Materials Science and Engineering: C, 103, 109766.
  • Volpi, N. (2011). Anti-inflammatory activity of chondroitin sulphate: new functions from an old natural macromolecule. Inflammopharmacology, 19(6), 299-306.
  • Walmsley, G. G., McArdle, A., Tevlin, R., Momeni, A., Atashroo, D., Hu, M. S., ... & Wan, D. C. (2015). Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1253-1263.
  • Wang, P., Perche, F., Logeart-Avramoglou, D., & Pichon, C. (2019). RNA-based therapy for osteogenesis. International journal of pharmaceutics, 569, 118594.
  • Wang, Q., Chen, B., Ma, F., Lin, S., Cao, M., Li, Y., & Gu, N. (2017). Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Research, 10(2), 626-642.
  • Wang, Q., Li, Y., Chen, X., Jiang, H., Zhang, Z., & Sun, X. (2019). Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection. Nano Research, 12(2), 421-428
  • Webster, T. J., & Ahn, E. S. (2006). Nanostructured biomaterials for tissue engineering bone. In Tissue Engineering II (pp. 275-308). Springer, Berlin, Heidelberg.
  • Wei, D., Jung, J., Yang, H., Stout, D. A., & Yang, L. (2016). Nanotechnology treatment options for osteoporosis and its corresponding consequences. Current osteoporosis reports, 14(5), 239-247.
  • Xiao, S., & Chen, L. (2020). The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. Journal of Controlled Release.
  • Yallapu, M. M., Nagesh, P. K. B., Jaggi, M., & Chauhan, S. C. (2015). Therapeutic applications of curcumin nanoformulations. The AAPS journal, 17(6), 1341-1356.
  • Yang, M., Ding, J., Feng, X., Chang, F., Wang, Y., Gao, Z., ... & Chen, X. (2017). Scavenger receptor-mediated targeted treatment of collagen- induced arthritis by dextran sulfate- methotrexate prodrug. Theranostics, 7(1), 97.
  • Zarins, J., Pilmane, M., Sidhoma, E., Salma, I., & Locs, J. (2019). The role of strontium enriched hydroxyapatite and tricalcium phosphate biomaterials in osteoporotic bone regeneration. Symmetry, 11(2), 229.
  • Zha, L., Banik, B., & Alexis, F. (2011). Stimulus responsive nanogels for drug delivery. Soft Matter, 7(13), 5908-5916.
  • Zhang, Q., Dehaini, D., Zhang, Y., Zhou, J., Chen, X., Zhang, L., ... & Zhang, L. (2018). Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nature nanotechnology, 13(12), 1182-1190.
  • Zhang, S., Wu, L., Cao, J., Wang, K., Ge, Y., Ma, W., ... & Shen, S. (2018). Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy. Colloids and Surfaces B: Biointerfaces, 170, 224-232.

Cite this article

    APA : Qaiser, F., Ibrahim, M., & Mazhar, R. (2020). Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis. Global Pharmaceutical Sciences Review, V(I), 25-39. https://doi.org/10.31703/gpsr.2020(V-I).04
    CHICAGO : Qaiser, Fariah, Muhammad Ibrahim, and Rabia Mazhar. 2020. "Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis." Global Pharmaceutical Sciences Review, V (I): 25-39 doi: 10.31703/gpsr.2020(V-I).04
    HARVARD : QAISER, F., IBRAHIM, M. & MAZHAR, R. 2020. Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis. Global Pharmaceutical Sciences Review, V, 25-39.
    MHRA : Qaiser, Fariah, Muhammad Ibrahim, and Rabia Mazhar. 2020. "Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis." Global Pharmaceutical Sciences Review, V: 25-39
    MLA : Qaiser, Fariah, Muhammad Ibrahim, and Rabia Mazhar. "Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis." Global Pharmaceutical Sciences Review, V.I (2020): 25-39 Print.
    OXFORD : Qaiser, Fariah, Ibrahim, Muhammad, and Mazhar, Rabia (2020), "Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis", Global Pharmaceutical Sciences Review, V (I), 25-39
    TURABIAN : Qaiser, Fariah, Muhammad Ibrahim, and Rabia Mazhar. "Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis." Global Pharmaceutical Sciences Review V, no. I (2020): 25-39. https://doi.org/10.31703/gpsr.2020(V-I).04